首页 > 器件类别 > 分立半导体

WPM4801

WPM4801 场效应晶体管

器件类别:分立半导体   

厂商名称:韦尔(WILLSEMI)

厂商官网:http://www.willsemi.com/

下载文档
文档预览
WPM4801
WPM4801
P-Channel Enhancement Mode MOSFET
www.willsemi.com
Description
The WPM4801 is the Dual P-Channel logic enhancement
mode power field effect transistors are produced using
high cell density , DMOS trench technology.
This high density process is especially tailored to
minimize on-state resistance.
These devices are particularly suited for low voltage
application , notebook computer power management and
other battery powered circuits where high-side
switching .
PIN CONNECTIONS
S1
1
G1
S2
G2
4
(Top View)
8
D1
D1
D2
D2
Features
-30V/-5.0A,R
DS(ON)
=
37m
@V
GS
= - 10V
-30V/-4.0A,R
DS(ON)
=
45m
@V
GS
= - 4.5V
Super high density cell design for extremely low
RDS (ON)
Exceptional on-resistance and maximum DC
current capability
SOP – 8P package design
Application
Power Management in Note book
Portable Equipment
Battery Powered System
DC/DC Converter
Load Switch
DSC
LCD Display inverter
WPM4801
YYWW
YYWW
= Date Code
WPM4801
= Specific Device Code
Marking Diagram and explain
Order information
WPM4801-8/TR
SOP-8P
2500Tape&Reel
http://www.willsemi.com
Page 1
0
Dec, 2011 Rev 1.3
WPM4801
Pin Assignment
Pin
1
2
3
4
5
6
7
8
Symbol
S1
G1
S2
G2
D2
D2
D1
D1
Description
Source 1
Gate 1
Source 2
Gate 2
Drain 2
Drain 2
Drain 1
Drain 1
Absolute Maximum Ratings
(T
A
=25
Unless otherwise noted)
Parameter
Drain-Source Voltage
Gate –Source Voltage
Continuous Drain Current(T
J
=150
Pulsed Drain Current
Continuous Source Current(Diode Conduction)
Power Dissipation
Operating Junction Temperature
Storage Temperature Range
Thermal Resistance-Junction to Ambient
T
A
=25
T
A
=70
)
T
A
=25
T
A
=70
Symbol
V
DSS
V
GSS
I
D
I
DM
I
S
P
D
T
J
T
STG
R
JA
Typical
-30
±12
Unit
V
V
A
A
A
W
-5.6
-4.5
-30
-2.3
2.0
1.2
-55/150
-55/150
62.5
/W
http://www.willsemi.com
Page 2
0
Dec, 2011 Rev 1.3
WPM4801
Electrical Characteristics
(T
A
=25
Unless otherwise noted)
Parameter
Static
Drain-Source Breakdown Voltage
Gate Threshold Voltage
Gate Leakage Current
Zero Gate Voltage Drain Current
On-State Drain Current
Drain-Source On-Resistance
Forward Transconductance
Diode Forward Voltage
Symbol
Conditions
Min.
Typ
Max.
Unit
V
(BR)DSS
V
GS
=0V,I
D
=-250uA
V
GS(th)
V
DS
=V
GS
,I
D
=-250uA
I
GSS
I
DSS
I
D(on)
R
DS(on)
gfs
V
SD
V
DS
=0V,V
GS
=±12V
V
DS
=-24V,V
GS
=0V
V
DS
=-24V,V
GS
=0V
T
J
=85
V
DS
= -5V,V
GS
=-10V
V
GS
=-10V,I
D
=-5.0A
V
GS
=-4.5V,I
D
=-4.0A
V
DS
=-5 V,I
D
=-4.3A
I
S
=-1.0A,V
GS
=0V
-30
-
0.6
-
1.0
-1.4
±100
-1
-10
-25
0.030
0.0366
0.037
0.0
45
12
-0.75
0.050
0.060
V
nA
uA
A
S
-1.5
V
Dynamic
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-On Time
Turn-Off Time
Q
g
Q
gs
Q
gd
C
iss
C
oss
C
rss
t
d(on)
t
r
t
d(off)
t
f
V
DD
=-15V,R
L
=15
I
D
-1.0A,V
GEN
=-10V
R
G
=6
V
DS
=-15V,V
GS
=0V
f=1MHz
V
DS
=-15V,V
GS
=-10V
I
D
= -4.3A
10
3.4
1.7
560
100
67
7
10
40
20
15
20
80
40
nS
pF
15
nC
http://www.willsemi.com
Page 3
0
Dec, 2011 Rev 1.3
WPM4801
Typical Characteristis
30
24
V
GS
=10V
V
GS
=6V
V
GS
=5V
V
GS
=4.5V
35
30
V
DS
=3V
I
D
,Drain Current(A)
18
12
6
0
V
GS
=3V
I
D
,Drain Current(A)
V
GS
=4V
25
20
15
10
5
0
0
1
2
3
4
5
0
V
DS
,Drain-Source voltage(V)
1
2
3
4
5
V
GS
,Gate-Source Voltage(V)
Drain Current VS Drain-Source voltage
Drain Current VS Gate-Source Voltage
140
I
D
=4.6A,T=25 C
O
2.0
T=25 C
O
R
DSON
Resistance(mohm)
I
S
Source Current(A)
120
1.5
100
1.0
80
0.5
60
2
4
6
8
10
0.0
0.2
0.4
0.6
0.8
V
GS
Gate-Source Voltage
V
SD
Source to Drain Voltage
R
DSON
Resistance VS Gate-Source Voltage
Source Current VS Source to Drain Voltage
http://www.willsemi.com
Page 4
0
Dec, 2011 Rev 1.3
WPM4801
Typical Characteristis
0.20
R
DSON
Resistance(mohm)
0.15
I
D
=250(uA),V
GS
=V
DS
70
65
60
55
50
45
-40
V
GS
=10V I
D
=4.6A
V
GS(on)
Vaniance(v)
0.10
0.05
0.00
-0.05
-0.10
-0.15
-50 -25
0
25
50
75 100 125 150 175
o
0
40
T
J
Temperature( C)
T
J
Temperature( C)
o
80
120
160
Gate-source voltage vs Temperature
R
DSON
Resistance VS T
J
Temperature
R
DSON
Resistance(ohm)
0.15
V
GS
=6.0V
0.10
V
GS
=4.5V
V
GS
=10V
0.05
0
I
D
,Drain Current(A)
10
20
30
R
DSON
Resistance VS I
D
,Drain Current
http://www.willsemi.com
Page 5
0
Dec, 2011 Rev 1.3
查看更多>
SD卡的驱动代码真的很难
有人自己写过SD卡的驱动代码吗?我从STM32的开发板的例程里看见的驱动代码,足足有3000多行,初始化和操作流程很复杂。像SD卡这种东西的代码应该不是一个人能写的吧?SD卡的驱动代码真的很难先看文档吧,再看代码,流程搞清楚了,代码多少行又有什么关系 看起来无从下手,不知道这种庞大的代码是怎么建立起来的...
lingking 综合技术交流
首届全国传感技术应用大会暨中国传感技术工程师年会将在北京拉开大幕
2013年3月由中国电子学会开展的首届全国传感技术应用大会暨中国传感技术工程师年会将在北京拉开大幕。大会主题题是传感技术的发展、创新和应用以及物联网与传感器技术,工业自动化与智能传感器技术,微传感器MEMS与智能器件,能源、环境、气象监测传感器与传感网技术,交通、公共安全用传感器与传感网技术。参会代表有工业与信息化产业部、中国科学技术协会、科学技术部有关领导,国内外知名企业专家,大、专院校专家,行业组织、研究机构,应用工程单位专家等,新闻媒体代表。我们可为单位提供分论坛专场...
中国电子学会 综合技术交流
Python编程快速上手 - 第一条Python程序
本次尝试编辑及运行第一条Python程序打开Mu编辑器软件,并且输入如下程序:点击保存后再点击运行,输出结果如下:至此第一条Python程序编辑及运行搞定Python编程快速上手-第一条Python程序笑谈兄,你这是什么IDE,看起来都信创了呀? 哦,我查到了:CSDN上的答疑解惑原来是个错误的网址下面是正确的:CSDN关于MU编辑器的解答原来如此! 天资愚钝,所以跟着书籍内容自个尝试来着 ...
beyond_笑谈 综合技术交流
【晚十点群直播】排序算法
排序算法用的非常广泛,嵌入式行业的你否有使用它?检索?查找?匹配?应该都能见到他的身影不如一起来讨论一下,你心中的排序算法。1、平时会用到那些排序算法?2、如何评价一个排序算法?时间复杂度、空间复杂度、稳定性3、说到排序自然离不开猪脚-快速排序号称十代算法之一,性能优越,含着金钥匙出生的。4、最优还有另外一个非常好用的但限制也很大的算法。不如大家猜猜怎么做?给定不重复的一组数据1,5,2,3,8,4,9,6,7,0,如何排序达到0(n)的时间复杂度(传说级)...
247153481 综合技术交流
求解释
#includereg52.h#include\"74hc595.h\"ucharledLenth;//流水灯当前长度charledAdd_x,ledAdd_y;//流水灯偏移量ucharled_x;//流水灯坐标数组ucharled_y;uchari;/*--------------------------------------流水灯移动函数---------------------------------------*/为什么他都可以开...
茂茂 综合技术交流
我想问一下这几个是什么器件SB,SL
我想问一下这几个是什么器件SB,SL SB是可以通过烙铁短接和断开的焊盘类似跳线或者0欧姆电阻作用 就跟个跳线一样的功能,用于测试的PCB上布置的临近无孔焊盘,可以通过选择是否焊接及选择焊接哪个/哪些焊盘来决定或改变连线回路,相当于焊接式跳线。原理图层面来看,就是可以选择不同电信号连接的端子,可以通过跳线帽选择或者电阻短接,具体看其PCB封装设计...
孤左先生 综合技术交流