首页 > 器件类别 > 无源元件

100X41N104MF4T

1 FUNCTIONS, 6.3 V, DATA LINE FILTER
1 功能, 6.3 V, 数据线滤波器

器件类别:无源元件   

厂商名称:Johanson Technology

厂商官网:http://www.johansontechnology.com

下载文档
器件参数
参数名称
属性值
功能数量
1
加工封装描述
EIA STD PACKAGE SIZE 0603, 3 PIN
无铅
Yes
欧盟RoHS规范
Yes
状态
ACTIVE
安装类型
SURFACE MOUNT
端子涂层
MATTE TIN OVER NICKEL
外形尺寸
L1.626XB0.889XH0.660 (mm)/L0.064XB0.035XH0.026 (inch)
制造商系列
X2Y
电容
100000 pF
过滤器类型
DATA LINE FILTER
额定电压
6.3 V
文档预览
S t
H ian
Ro pl
6
om
.0
C
20
10
X2Y
®
F
ILTER
& D
ECOUPLING
C
APACITORS
X2Y
®
filter capacitors employ a unique, patented low inductance design featuring two balanced capacitors
that are immune to temperature, voltage and aging performance differences.
These components offer superior decoupling and EMI filtering performance, virtually eliminate parasitics,
and can replace multiple capacitors and inductors saving board space and reducing assembly costs.
A
DVANTAGES
One device for EMI suppression or decoupling
Replace up to 7 components with one X2Y
Differential and common mode attenuation
Matched capacitance line to ground, both lines
Low inductance due to cancellation effect
A
PPLICATIONS
Amplifier FIlter & Decoupling
High Speed Data Filtering
EMC I/O Filtering
FPGA / ASIC / µ-P Decoupling
DDR Memory Decoupling
2000pF 1000pF
3000pF 1500pF
4400pF 2200pF
9400pF 4700pF
.078µF .039µF
.010µF
.015µF
.022µF
.047µF
0.10µF
0.18µF
0.22µF
0.33µF
0.40µF
0.47µF
0.94µF
474
10
10
25
100
<10pF
100pF
220pF
470pF
Circuit 1
(1 Y-Cap.)
Circuit 2
(2 Y-Caps.)
CAP.
CODE
.020µF
.030µF
.044µF
.094µF
0.20µF
0.36µF
0.44µF
0.68µF
0.80µF
<20pF
200pF
440pF
940pF
XRX
100
220
270
330
470
101
221
471
102
152
222
472
103
153
223
393
473
104
184
224
334
404
SIZE
0402 (X07)
NPO
X7R
NPO
50
50
50
50
50
50
50
50
50
50
50
50
50
16
100 100 100 100 100
50
50
50
50
25
25
16
10
6.3
16
10
10
0603 (X14)
X7R
X5R
NPO
100 100 100 100 100 100 100
100 100 100 100 100 100 100
50
50
50
50
25
10
0805 (X15)
X7R
NPO
100 100 100 100 100 100 100 100
1206 (X18
X7R
1210 (X41)
1410 (X44)
1812 (X43)
X7R
X7R
X7R
VOLTAGE
RATINGS
6.3 = 6.3 VDC
10 = 10 VDC
16 = 16 VDC
25 = 25 VDC
50 = 50 VDC
100 = 100 VDC
500 = 500 VDC
100
100 100 100
500
500
500
100 100
100
16
16
100 100
100
16
SEE PART NUMBER LISTING TABLE ON PAGES 7 & 8 Contact factory for part combinations not shown.
Circuit 1 capacitance measured Line-to-Ground (A or B to G) Circuit 2 capacitance measured Power-to-Ground (A + B to G)
Rated voltage is from line to ground in Circuit 1, power to ground in Circuit 2 .
H
OW TO
O
RDER
X2Y
®
F
ILTER
& D
ECOUPLING
C
APACITORS
100
VOLTAGE
6R3 = 6.3 V
100 = 10 V
160 = 16 V
250 = 25 V
500 = 50 V
101 = 100 V
501 = 500 V
P/N written: 100X14W104MV4T
X14
CASE SIZE
X07 = 0402
X14 = 0603
X15 = 0805
X18 = 1206
X41 = 1210
X43 = 1812
X44 = 1410
W
DIELECTRIC
N = NPO
W = X7R
X = X5R
104
CAPACITANCE
(Circuit 1)
1st two digits are
significant; third digit
denotes number of zeros.
102 = 1000 pF = 1 nF
103 = 0.01 µF = 10 nF
104 = 0.10 µF = 100 nF
M
TOLERANCE
M = ± 20%
V
TERMINATION
V = Ni barrier w/
100% Sn Plating
Available on select parts:
F = Polyterm
®
soft polymer termination
T = SnPb
4
T
TAPE MODIFIER
Code
Tape
Reel
E
Embossed
7”
T
Paper
7”
Tape specs. per EIA RS481
MARKING
4 = Unmarked
X2Y® technology patents and registered trademark under license from X2Y ATTENUATORS, LLC
2
www.johanson dielectrics.com
105
2.0µF
20pF
44pF
54pF
66pF
94pF
1.0µF
10pF
22pF
27pF
33pF
47pF
X2Y
®
F
ILTER
& D
ECOUPLING
C
APACITORS
Filtering
Circuit 1 S21
Signal-to-Ground
Signal 1
A
Ground
Signal 2
G1
B
G2
Power
Decoupling
Circuit 2 S21
Power-to-Ground
A
G1
B
Ground
G2
Labeled capacitance values below follow the P/N order code or Y cap value (Circuit 1.)
Effective capacitance measured in Circuit 2 is 200% of the labled Circuit 1 Y cap value.
10.0Ω
10.0Ω
Approximate Impedance (Ω)
1.00Ω
1.00Ω
0.10Ω
0.10Ω
0.01Ω
0.01Ω
E
LECTRICAL
C
HARACTERISTICS
Temperature Coefficient:
Dielectric Strength:
NPO
0±30ppm/°C (-55 to +125°C)
X7R
±15% (-55 to +125°C)
WVDC
100V: 2.5 X WVDC, 25°C, 50mA max.
WVDC = 500V: 1.4 X WVDC, 25°C, 50mA max.
X5R
±15% (-55 to +85°C)
Dissipation Factor:
Insulation Resistance
(Min. @ 25°C, WVDC)
Test Conditions:
Other:
0.1% max.
WVDC
50 VDC: 2.5% max.
WVDC = 25 VDC: 3.5% max.
WVDC = 10-16 VDC: 5.0% max.
WVDC = 6.3 VDC: 10% max.
C≤ 0.047µF: 1000
ΩF
or 100 GΩ, whichever is less
C> 0.047µF: 500
ΩF
or 10 GΩ, whichever is less
WVDC
50 VDC: 5% max.
WVDC
25 VDC: 10% max.
C > 100 pF; 1kHz ±50Hz; 1.0±0.2 VRMS
C
100 pF; 1Mhz ±50kHz; 1.0±0.2 VRMS
1.0kHz±50Hz @ 1.0±0.2 Vrms
See main catalog page 18 for additional dielectric specifications.
Equivalent Circuits
A
Cross-sectional View
G
A
B
G
Dimensional View
CB
EB
T
L
G1
G2
W
B
M
ECHANICAL
C
HARACTERISTICS
0402 (X07)
IN
mm
1.143 ±
0.076
0.635 ±
0.076
0.508
max
0.203 ±
0.076
0.305 ±
0.076
0603 (X14)
IN
0.064 ±
0.005
0.035 ±
0.005
0.026
max
0.010 ±
0.006
0.018 ±
0.004
mm
1.626 ±
0.127
0.889 ±
0.127
0.660
max
0.254 ±
0.152
0.457 ±
0.102
0805 (X15)
IN
0.080 ±
0.008
0.050 ±
0.008
0.040
max
0.012 ±
0.008
0.022 ±
0.005
mm
2.032 ±
0.203
1.270 ±
0.203
1.016
max
0.305 ±
0.203
0.559 ±
0.127
1206 (X18)
IN
0.124 ±
0.010
0.063 ±
0.010
0.050
max
0.016 ±
0.010
0.040 ±
0.005
mm
3.150 ±
0.254
1.600 ±
0.254
1.270
max
0.406 ±
0.254
1.016 ±
0.127
1210 (X41)
IN
0.125 ±
0.010
0.098 ±
0.010
0.070
max
0.018 ±
0.010
0.045 ±
0.005
mm
3.175 ±
0.254
2.489 ±
0.254
1.778
max
0.457 ±
0.254
1.143 ±
0.127
1410 (X44)
IN
0.140 ±
0.010
0.098 ±
0.010
0.070
max
0.018 ±
0.010
0.045 ±
0.005
mm
3.556 ±
0.254
2.490 ±
0.254
1.778
max
0.457 ±
0.254
1.143 ±
0.127
1812 (X43)
IN
0.174 ±
0.010
0.125 ±
0.010
0.090
max
0.022 ±
0.012
0.045 ±
0.005
mm
4.420 ±
0.254
3.175 ±
0.254
2.286
max
0.559 ±
0.305
1.143 ±
0.127
L
W
T
EB
CB
0.045 ±
0.003
0.025 ±
0.003
0.020
max
0.008 ±
0.003
0.012 ±
0.003
www.johanson dielectrics.com
3
Approximate Impedance (Ω)
X2Y
®
F
ILTER
& D
ECOUPLING
C
APACITORS
The X2Y
®
Design - A Balanced, Low ESL, “Capacitor Circuit”
The X2Y
®
capacitor design starts with standard 2 terminal MLC capacitor’s opposing electrode sets, A & B, and adds a third electrode set (G) which surround
each A & B electrode. The result is a higly vesatile three node capacitive circuit containing two tightly matched, low inductance capacitors in a compact, four-
terminal SMT chip.
Signal 1
A
Ground
Signal 2
G1
B
G2
X2Y
®
Circuit 1: Filtering
Circuit 1 connects the X2Y
®
filter capacitor across two signal lines. Common-mode noise is filtered to ground (or
reference) by the two Y-capacitors, A & B. Because X2Y
®
is a balanced circuit that is tightly matched in both
phase and magnitude with respect to ground, common-to-differential mode noise conversion is minimized and
any differential-mode noise is cancelled within the device. The low inductance of the capacitors extends their high
frequency attenuation considerably over discrete MLCs.
Power
A
G1
B
Ground
G2
X2Y
®
Circuit 2: Power Bypass / Decoupling
Circuit 2 connects the A & B capacitors in parallel doubling the total capacitance while reducing the inductance.
X2Y capacitors exhibit up to 1/10th the device inductance and 1/5th the mounted inductance of similar sized MLC
capcitors enabling high-performance bypass networks with far fewer components and vias. Low ESL delivers
improved High Frequency performance into the GHz range.
GSM RFI Attenuation in Audio & Analog
GSM handsets transmit in the 850 and 1850 MHz bands using a TDMA pulse
rate of 217Hz. These signals cause the GSM buzz heard in a wide range of
audio products from headphones to concert hall PA systems or “silent” signal
errors created in medical, industrial process control, and security applications.
Testing was conducted where an 840MHz GSM handset signal was delivered
to the inputs of three different amplifier test circuit configurations shown below
whose outputs were measured on a HF spectrum analyzer.
1) No input filter, 2 discrete MLC 100nF power bypass caps.
2) 2 discrete MLC 1nF input filter, 2 discrete MLC 100nF power bypass caps.
3) A single X2Y 1nF input filter, a single X2Y 100nF power bypass cap.
X2Y configuration provided a nearly flat response above the ambient and up to
10 dB imrpoved rejection than the conventional MLCC configuration.
Amplifier Input Filter Example
In this example, a single Johanson X2Y
®
component was used to filter noise at the input of a DC
instrumentation amplifier. This reduced component count by 3-to-1 and costs by over 70% vs.
conventional filter components that included 1% film Y-capacitors.
Parameter
DC offset shift
Common mode rejection
X2Y
®
10nF
< 0.1 µV
91 dB
Discrete
10nF, 2 @ 220 pF
< 0.1 µV
92 dB
Comments
Referred to input
Source: Analog Devices, “A Designer’s Guide to Instrumentation Amplifiers (2nd Edition)” by Charles Kitchin and Lew Counts
4
www.johanson dielectrics.com
X2Y
®
F
ILTER
& D
ECOUPLING
C
APACITORS
Common Mode Choke Replacement
In this example, a 5 µH common mode choke is replaced by an 0805, 1000pF
X2Y
®
component acheiving superior EMI filtering by a component a fraction
of the size and cost.
No Filter
CMC 5uH
X2Y® 1000pF
Ambient
Common Mode Choke
9.0 x 6.0 x 5.0 mm
DC Motor EMI Reduction: A Superior Solution
One X2Y
®
component has successfully replaced 7 discrete filter components
while achieving superior EMI filtering.
X2Y
®
2.0 x 1.3 x 1.0 mm
Eliminating Capacitor Anti-Resonance Issue
A common design practice is to parallel decade capacitance values to extend
the high frequency performance of the filter network. This causes an unintende
and often over-looked effect of anti-resonant peaks in the filter networks
combined impedance. X2Y’s very low mounted inductance allows designers
to use a single, higher value part and completely avoid the anti-resonance
problem. The impedance graph on right shows the combined mounted
impedance of a 1nF, 10nF & 100nF 0402 MLC in parrallel in RED. The MLC
networks anti-resonance peaks are nearly 10 times the desired impedance. A
100nF and 47nF X2Y are plotted in BLUE and GREEN. (The total capacitance of
X2Y (Circuit 2) is twice the value, or 200nF and 98nF in this example.) The sigle
X2Y is clearly superior to the three paralleled MLCs.
X2Y High Performance Power Bypass - Improve Performance, Reduce Space & Vias
Actual measured performance of two high performance SerDes FPGA designs demonstrate how a 13 component X2Y bypass network significantly out
performs a 38 component MLC network. For more information see http://johansondielectrics.com/pdfs/JDI_X2Y_STXII.pdf
www.johanson dielectrics.com
5
查看更多>
CC2640蓝牙4.1开发板,官方兼容板,欢迎大家使用
https://item.taobao.com/item.htm?spm=a1z10.1-c.w...
rf_smart 无线连接
平面螺旋电感设计
我想问一下关于PCB平面螺旋电感的感值怎么计算?还有是不是有什么专门的软件可以设计这样的电感导出封...
zhuzd PCB设计
关于嵌入式工程师的资格认证问题
报名一个嵌入式的学习班,此班提供一个免费的ESCE认证机会。 请问各位这个认证在社会上的认可度有多高...
yuan625 嵌入式系统
wince4.2如何调用软键盘
我装了wince4.2 再装了EVC4.0 后来装了STANDARD_SDK.msi 写了个简单的h...
iorihu WindowsCE
小弟现求一个cc2530驱动继电器的程序
如果你还有温度采集的程序那就更好了,小弟在这里先谢谢了,小弟初学 帮帮小弟吧 小弟现求一个cc...
q137226446 RF/无线
天天说的48V汽车系统,到底是个啥?
这几年,越来越多汽车OEM和Tier1推出12V/48V双电池汽车系统设计的轻混合动力汽车 (MH...
eric_wang 汽车电子
热门器件
热门资源推荐
器件捷径:
L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 LA LB LC LD LE LF LG LH LI LJ LK LL LM LN LO LP LQ LR LS LT LU LV LW LX LY LZ M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 MA MB MC MD ME MF MG MH MI MJ MK ML MM MN MO MP MQ MR MS MT MU MV MW MX MY MZ N0 N1 N2 N3 N4 N5 N6 N7 N8 NA NB NC ND NE NF NG NH NI NJ NK NL NM NN NO NP NQ NR NS NT NU NV NX NZ O0 O1 O2 O3 OA OB OC OD OE OF OG OH OI OJ OK OL OM ON OP OQ OR OS OT OV OX OY OZ P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC PD PE PF PG PH PI PJ PK PL PM PN PO PP PQ PR PS PT PU PV PW PX PY PZ Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 QA QB QC QE QF QG QH QK QL QM QP QR QS QT QV QW QX QY R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 RA RB RC RD RE RF RG RH RI RJ RK RL RM RN RO RP RQ RR RS RT RU RV RW RX RY RZ
需要登录后才可以下载。
登录取消