1N4001G/L–1N4007G/L
Vishay Lite–On Power Semiconductor
1.0A Glass Passivated Rectifier
Features
D
Glass passivated die construction
D
Diffused junction
D
High current capability and low forward
voltage drop
A – 405
D
Surge overload rating to 30A peak
D
Plastic material – UL Recognition flammability
classification 94V–0
DO – 41
14 451
Absolute Maximum Ratings
T
j
= 25
_
C
Parameter
Repetitive peak reverse voltage
g
=Working peak reverse voltage
DC Blocking lt
=DC Bl ki voltage
Test
Conditions
Type
1N4001 G/L
1N4002 G/L
1N4003 G/L
1N4004 G/L
1N4005 G/L
1N4006 G/L
1N4007 G/L
Symbol
V
RRM
=V
RWM
V
=V
R
Value
50
100
200
400
600
800
1000
30
1
–65...+175
Unit
V
V
V
V
V
V
V
A
A
°
C
Peak forward surge current
Average forward current
T
A
=75
°
C
Junction and storage temperature range
I
FSM
I
FAV
T
j
=T
stg
Electrical Characteristics
T
j
= 25
_
C
Parameter
Forward voltage
Reverse current
Reverse recovery time
Diode capacitance
Thermal resistance junction to ambient
Test Conditions
I
F
=1A
T
A
=25
°
C
T
A
=125
°
C
I
F
=0.5A, I
R
=1A,
I
rr
=0.25A
V
R
=4V, f=1MHz
Type Symbol Min Typ Max
V
F
1
I
R
5
I
R
50
t
rr
2
C
D
R
thJA
8
100
Unit
V
m
A
m
A
m
s
pF
K/W
Rev. A2, 24-Jun-98
1 (4)
1N4001G/L–1N4007G/L
Vishay Lite–On Power Semiconductor
Characteristics
(T
j
= 25
_
C unless otherwise specified)
I
FAV
– Average Forward Current ( A )
1.0
C
D
– Diode Capacitance ( pF )
0.8
100
T
j
= 25°C
f = 1 MHz
0.6
10
0.4
0.2
0
40
15551
80 100 120 140 160 180
T
amb
– Ambient Temperature (
°C
)
60
1.0
1.0
15554
10
V
R
– Reverse Voltage ( V )
100
Figure 1. Max. Average Forward Current vs.
Ambient Temperature
10
Figure 4. Typ. Diode Capacitance vs. Reverse Voltage
100
I
R
– Reverse Current (
m
A )
T
j
= 125°C
I
F
– Forward Current ( A )
1.0
10
0.1
T
j
= 25°C
I
F
Pulse Width = 300
µs
2% Duty Cycle
1.0
T
j
= 25°C
0.01
0.6
15552
0.1
0.8
1.0
1.2
1.4
V
F
– Forward Voltage ( V )
1.6
15555
0 20 40
60 80 100 120 140
Percent of Rated Peak Reverse Voltage (%)
Figure 2. Typ. Forward Current vs. Forward Voltage
I
FSM
– Peak Forward Surge Current ( A )
Figure 5. Typ. Reverse Current vs. Percent of
Rated Peak Reverse Voltage
30
8.3 ms Single Half–Sine–Wave
JEDEC method
20
10
0
1
10
Number of Cycles at 60 Hz
100
15553
Figure 3. Max. Peak Forward Surge Current vs.
Number of Cycles
2 (4)
Rev. A2, 24-Jun-98
1N4001G/L–1N4007G/L
Vishay Lite–On Power Semiconductor
Dimensions in mm
14447
Case: molded plastic
Polarity: cathode band
Approx. weight: DO–41 0.30 grams,
A–405 0,20 grams
Mounting position: any
Marking: type number
Rev. A2, 24-Jun-98
3 (4)
1N4001G/L–1N4007G/L
Vishay Lite–On Power Semiconductor
Ozone Depleting Substances Policy Statement
It is the policy of
Vishay Semiconductor GmbH
to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known
as ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH
has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH
can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized
application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out
of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
4 (4)
Rev. A2, 24-Jun-98