首页 > 器件类别 > 存储 > 存储

5962-0053602TUA

Standard SRAM, 512KX8, 25ns, CMOS, CDFP36, BOTTOM BRAZED, CERAMIC, FP-36

器件类别:存储    存储   

厂商名称:Cobham Semiconductor Solutions

下载文档
器件参数
参数名称
属性值
厂商名称
Cobham Semiconductor Solutions
零件包装代码
DFP
包装说明
DFP,
针数
36
Reach Compliance Code
unknown
ECCN代码
3A001.A.2.C
最长访问时间
25 ns
JESD-30 代码
R-CDFP-F36
JESD-609代码
e0
内存密度
4194304 bit
内存集成电路类型
STANDARD SRAM
内存宽度
8
功能数量
1
端子数量
36
字数
524288 words
字数代码
512000
工作模式
ASYNCHRONOUS
最高工作温度
125 °C
最低工作温度
-40 °C
组织
512KX8
封装主体材料
CERAMIC, METAL-SEALED COFIRED
封装代码
DFP
封装形状
RECTANGULAR
封装形式
FLATPACK
并行/串行
PARALLEL
认证状态
Not Qualified
筛选级别
MIL-PRF-38535 Class T
座面最大高度
3.048 mm
最大供电电压 (Vsup)
5.5 V
最小供电电压 (Vsup)
4.5 V
标称供电电压 (Vsup)
5 V
表面贴装
YES
技术
CMOS
温度等级
AUTOMOTIVE
端子面层
TIN LEAD
端子形式
FLAT
端子节距
1.27 mm
端子位置
DUAL
宽度
12.192 mm
文档预览
Standard Products
QCOTS
TM
UT9Q512 512K x 8 SRAM
Data Sheet
November 13, 2002
FEATURES
q
20ns maximum (5 volt supply) address access time
q
Asynchronous operation for compatibility with industry-
standard 512K x 8 SRAMs
q
TTL compatible inputs and output levels, three-state
bidirectional data bus
q
Typical radiation performance
- Total dose: 50krads
- >100krads(Si), for any orbit, using Aeroflex UTMC
patented shielded package
- SEL Immune >80 MeV-cm
2
/mg
- LET
TH
(0.25) = >10 MeV-cm
2
/mg
- Saturated Cross Section (cm
2
) per bit, 5.0E-9
-<1E-8 errors/bit-day, Adams to 90% geosynchronous
heavy ion
q
Packaging options:
- 36-lead ceramic flatpack (weight 3.42 grams)
- 36-lead flatpack shielded (weight 10.77 grams)
q
Standard Microcircuit Drawing 5962-00536
- QML T and Q compliant part
INTRODUCTION
The QCOTS
TM
UT9Q512 Quantified Commercial Off-the-
Shelf product is a high-performance CMOS static RAM
organized as 524,288 words by 8 bits. Easy memory
expansion is provided by an active LOW Chip Enable (E),
an active LOW Output Enable (G), and three-state drivers.
This device has a power-down feature that reduces power
consumption by more than 90% when deselected
.
Writing to the devicei s accomplished by taking Chip Enable
one (E) input LOW and Write Enable (W) inputs LOW.
Data on the eight I/O pins (DQ
0
through DQ
7
) is then written
into the location specified on the address pins (A
0
through
A
18
). Reading from the device is accomplished by taking
Chip Enable one (E) and Output Enable (G) LOW while
forcing Write Enable (W) HIGH. Under these conditions,
the contents of the memory location specified by the address
pins will appear on the I/O pins.
The eight input/output pins (DQ
0
through DQ
7
) are placed
in a high impedance state when the device is deselected (E)
HIGH), the outputs are disabled ( G HIGH), or during a write
operation (E LOWand W LOW).
Clk. Gen.
A0
A
1
A
2
A
3
A
4
A
5
A
6
A7
A
8
A9
Pre-Charge Circuit
Row Select
Memory Array
1024 Rows
512x8 Columns
I/O Circuit
Column Select
Data
Control
CLK
Gen.
A
10
A11
A
12
A
13
A
14
A
15
A
16
A
17
A
18
DQ
0
- DQ
7
E
W
G
Figure 1. UT9Q512 SRAM Block Diagram
DEVICE OPERATION
A0
A1
A2
A3
A4
E
DQ0
DQ1
V
D D
V
SS
DQ2
DQ3
W
A5
A6
A7
A8
A9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
NC
A18
A17
A16
A15
G
DQ7
DQ6
V
S S
V
D D
DQ5
DQ4
A14
A13
A12
A11
A10
NC
The UT9Q512 has three control inputs called Enable 1 ( E), Write
Enable ( W), and Output Enable (G); 19 address inputs, A(18:0);
and eight bidirectional data lines, DQ(7:0). E Device Enable
controls device selection, active, and standby modes. Asserting
E enables the device, causes I
DD
to rise to its active value, and
decodes the 19 address inputs to select one of 524,288 words in
the memory. W controls read and write operations. During a
read cycle, G must be asserted to enable the outputs.
Table 1. Device Operation Truth Table
G
X
1
X
1
0
W
X
0
1
1
E
1
0
0
0
I/O Mode
3-state
Data in
3-state
Data out
Mode
Standby
Write
Read
2
Read
Figure 2. UT9Q512 25ns SRAM Pinout (36)
(For both shielded and unshielded packages)
PIN NAMES
A(18:0)
DQ(7:0)
E
W
G
V
DD
V
SS
Address
Data Input/Output
Enable
Write Enable
Output Enable
Power
Ground
Notes:
1. “X” is defined as a “don’t care” condition.
2. Device active; outputs disabled.
READ CYCLE
A combination of W greater than V
IH
(min) and E less than V
IL
(max) defines a read cycle. Read access time is measured from
the latter of Device Enable, Output Enable, or valid address to
valid data output.
SRAM Read Cycle 1, the Address Access in figure 3a, is
initiated by a change in address inputs while the chip is enabled
with G asserted and W deasserted. Valid data appears on data
outputs DQ(7:0) after the specified t
AVQV
is satisfied. Outputs
remain active throughout the entire cycle. As long as Device
Enable and Output Enable are active, the address inputs may
change at a rate equal to the minimum read cycle time (t
AVAV
).
SRAM read Cycle 2, the Chip Enable - Controlled Access in
figure 3b, is initiated by E going active while G remains asserted,
W remains deasserted, and the addresses remain stable for the
entire cycle. After the specified t
ETQV
is satisfied, the eight-bit
word addressed by A(18:0) is accessed and appears at the data
outputs DQ(7:0).
SRAM read Cycle 3, the Output Enable - Controlled Access in
figure 3c, is initiated by G going active while E is asserted, W
is deasserted, and the addresses are stable. Read access time is
t
GLQV
unless t
AVQV
or t
ETQV
have not been satisfied.
2
WRITE CYCLE
A combination of W less than V
IL
(max) and E less than
V
IL
(max) defines a write cycle. The state of G is a “don’t care”
for a write cycle. The outputs are placed in the high-impedance
state when either G is greater than V
IH
(min), or when W is less
than V
IL
(max).
Write Cycle 1, the Write Enable - Controlled Access in figure
4a, is defined by a write terminated by W going high, with E
still active. The write pulse width is defined by t
WLWH
when the
write is initiated by W, and by t
ETWH
when the write is initiated
by E. Unless the outputs have been previously placed in the high-
impedance state byG, the user must wait t
WLQZ
before applying
data to the nine bidirectional pins DQ(7:0) to avoid bus
contention.
Write Cycle 2, the Chip Enable - Controlled Access in figure
4b, is defined by a write terminated by E going inactive. The
write pulse width is defined by t
WLEF
when the write is initiated
by W, and by t
ETEF
when the write is initiated by the E going
active. For the W initiated write, unless the outputs have been
previously placed in the high-impedance state
by G, the user must wait t
WLQZ
before applying data to the eight
bidirectional pins DQ(7:0) to avoid bus contention.
TYPICAL RADIATION HARDNESS
Table 2. Radiation Hardness
Design Specifications
1
Total Dose
Heavy Ion
Error Rate
2
50
<1E-8
krad(Si)
Errors/Bit-Day
Notes:
1. The SRAM will not latchup during radiation exposure under recommended
operating conditions.
2. 10% worst case particle environment, Geosynchronous orbit, 0.025 mils of
Aluminum.
3
ABSOLUTE MAXIMUM RATINGS
1
(Referenced to V
SS
)
SYMBOL
V
DD
V
I/O
T
STG
P
D
T
J
Θ
JC
I
I
PARAMETER
DC supply voltage
Voltage on any pin
Storage temperature
Maximum power dissipation
Maximum junction temperature
2
Thermal resistance, junction-to-case
3
DC input current
LIMITS
-0.5 to 7.0V
-0.5 to 7.0V
-65 to +150°C
1.0W
+150°C
10°C/W
±
10 mA
Notes:
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability and performance.
2. Maximum junction temperature may be increased to +175°C during burn-in and steady-static life.
3. Test per MIL-STD-883, Method 1012.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
V
DD
T
C
PARAMETER
Positive supply voltage
Case temperature range
LIMITS
4.5 to 5.5V
(C) screening: -55° to +125°C
(E) screening: -40° to +125°C
V
IN
DC input voltage
0V to V
DD
4
DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*
(-55°C to +125°C for (C) screening and -40
o
C to +125
o
C for (W) screening) (V
DD
= 5.0V + 10%)
SYMBOL
V
IH
V
IL
V
OL1
V
OL2
V
OH1
V
OH2
C
IN 1
C
IO 1
I
IN
I
OZ
PARAMETER
High-level input voltage
Low-level input voltage
Low-level output voltage
Low-level output voltage
High-level output voltage
High-level output voltage
Input capacitance
Bidirectional I/O capacitance
Input leakage current
Three-state output leakage current
I
OL
= 8mA, V
DD
=4.5V
I
OL
= 200µA,V
DD
=4.5V
I
OH
= -4mA,V
DD
=4.5V
I
OH
= -200µA,V
DD
=4.5V
ƒ
= 1MHz @ 0V
ƒ
= 1MHz @ 0V
V
IN
= V
DD
and V
SS,
V
DD
= V
DD
(max)
V
O
= V
DD
and V
SS
V
DD
= V
DD
(max)
G = V
DD
(max)
I
OS 2, 3
I
DD
(OP)
Short-circuit output current
V
DD
= V
DD
(max), V
O
= V
DD
V
DD
= V
DD
(max), V
O
= 0V
Supply current operating
@ 1MHz
Inputs: V
IL
= 0.8V,
V
IH
= 2.0V
I
OUT
= 0mA
V
DD
= V
DD
(max)
I
DD1
(OP)
Supply current operating
@40MHz
Inputs: V
IL
= 0.8V,
V
IH
= 2.0V
I
OUT
= 0mA
V
DD
= V
DD
(max)
I
DD2
(SB)
Supply current standby
@0MHz
Inputs: V
IL
= V
SS
I
OUT
= 0mA
E = V
DD
- 0.5
V
DD
= V
DD
(max)
V
IH
= V
DD
- 0.5V
Notes:
* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019 .
1. Measured only for initial qualification and after process or design changes that could affect input/output capacitance.
2. Supplied as a design limit but not guaranteed or tested.
3. Not more than one output may be shorted at a time for maximum duration of one second.
CONDITION
MIN
2.0
MAX
UNIT
V
0.8
0.4
0.05
2.4
3.2
10
12
-2
-2
2
2
V
V
V
V
V
pF
pF
µA
µA
-90
90
mA
125
mA
180
mA
-55°C and 25°C
-40°C and 25°C
125°C
6
6
12
mA
mA
mA
5
查看更多>
热门器件
热门资源推荐
器件捷径:
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SX SY SZ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP TQ TR TS TT TU TV TW TX TY TZ U0 U1 U2 U3 U4 U6 U7 U8 UA UB UC UD UE UF UG UH UI UJ UK UL UM UN UP UQ UR US UT UU UV UW UX UZ V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 VA VB VC VD VE VF VG VH VI VJ VK VL VM VN VO VP VQ VR VS VT VU VV VW VX VY VZ W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 WA WB WC WD WE WF WG WH WI WJ WK WL WM WN WO WP WR WS WT WU WV WW WY X0 X1 X2 X3 X4 X5 X7 X8 X9 XA XB XC XD XE XF XG XH XK XL XM XN XO XP XQ XR XS XT XU XV XW XX XY XZ Y0 Y1 Y2 Y4 Y5 Y6 Y9 YA YB YC YD YE YF YG YH YK YL YM YN YP YQ YR YS YT YX Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z8 ZA ZB ZC ZD ZE ZF ZG ZH ZJ ZL ZM ZN ZP ZR ZS ZT ZU ZV ZW ZX ZY
需要登录后才可以下载。
登录取消