首页 > 器件类别 > 模拟混合信号IC > 驱动程序和接口

5962-F9583302QXX

Line Driver, CDFP16, CERAMIC, FP-16

器件类别:模拟混合信号IC    驱动程序和接口   

厂商名称:Cobham Semiconductor Solutions

下载文档
器件参数
参数名称
属性值
厂商名称
Cobham Semiconductor Solutions
零件包装代码
DFP
包装说明
,
针数
16
Reach Compliance Code
unknown
ECCN代码
EAR99
接口集成电路类型
LINE DRIVER
JESD-30 代码
R-CDFP-F16
端子数量
16
封装主体材料
CERAMIC, METAL-SEALED COFIRED
封装形状
RECTANGULAR
封装形式
FLATPACK
认证状态
Not Qualified
表面贴装
YES
端子形式
FLAT
端子位置
DUAL
总剂量
300k Rad(Si) V
Base Number Matches
1
文档预览
Standard Products
UT54LVDS031 Quad Driver
Data Sheet
December 2008
www.aeroflex.com/lvds
FEATURES
>155.5 Mbps (77.7 MHz) switching rates
+340mV nominal differential signaling
5 V power supply
TTL compatible inputs
Ultra low power CMOS technology
5.0ns maximum, propagation delay
3.0ns maximum, differential skew
Operational environment: total dose irradiation testing to
MIL-STD-883 Method 1019
- Total-dose: 300 krad(Si) and 1Mrad(Si)
- Latchup immune (LET > 100 MeV-cm
2
/mg)
Packaging options:
- 16-lead flatpack (dual in-line), weight 0.7 grams
Standard Microcircuit Drawing 5962-95833
- QML Q and V compliant part
Compatible with IEEE 1596.3SCI LVDS
Compatible with ANSI/TIA/EIA 644-1996 LVDS Standard
INTRODUCTION
The UT54LVDS031 Quad Driver is a quad CMOS differential
line driver designed for applications requiring ultra low power
dissipation and high data rates. The device is designed to support
data rates in excess of 155.5 Mbps (77.7 MHz) utilizing Low
Voltage Differential Signaling (LVDS) technology.
The UT54LVDS031 accepts TTL input levels and translates
them to low voltage (340mV) differential output signals. In
addition, the driver supports a three-state function that may be
used to disable the output stage, disabling the load current, and
thus dropping the device to an ultra low idle power state.
The UT54LVDS031 and companion quad line receiver
UT54LVDS032 provide new alternatives to high power pseudo-
ECL devices for high speed point-to-point interface
applications.
D
IN1
D
OUT1+
D1
D
OUT1-
D
IN2
D
OUT2+
D2
D
OUT2-
D
OUT3+
D3
D
OUT3-
D
OUT4+
D4
D
OUT4-
D
IN3
D
IN4
EN
EN
Figure 1. UT54LVDS031 Quad Driver Block Diagram
1
APPLICATIONS INFORMATION
The UT54LVDS031 driver’s intended use is primarily in an
uncomplicated point-to-point configuration as is shown in
Figure 3. This configuration provides a clean signaling
environment for quick edge rates of the drivers. The receiver is
connected to the driver through a balanced media such as a
standard twisted pair cable, a parallel pair cable, or simply PCB
traces. Typically, the characteristic impedance of the media is in
the range of 100Ω. A termination resistor of 100Ω should be
selected to match the media and is located as close to the receiver
input pins as possible. The termination resistor converts the
current sourced by the driver into voltages that are detected by
the receiver. Other configurations are possible such as a multi-
receiver configuration, but the effects of a mid-stream
connector(s), cable stub(s), and other impedance discontinuities,
as well as ground shifting, noise margin limits, and total
termination loading must be taken into account.
D
IN1
D
OUT1+
D
OUT1-
EN
D
OUT2-
D
OUT2+
D
IN2
V
SS
1
2
3
4
5
6
7
8
UT54LVDS031
Driver
16
15
14
13
12
11
10
9
V
DD
D
IN4
D
OUT4+
D
OUT4-
EN
D
OUT3-
D
OUT3+
D
IN3
Figure 2. UT54LVDS031 Pinout
TRUTH TABLE
Enables
EN
L
EN
H
Input
D
IN
X
L
H
Z
L
H
Output
D
OUT+
D
OUT-
Z
H
L
DATA
INPUT
ENABLE
RT 100Ω
1/4 UT54LVDS032
+
-
DATA
OUTPUT
1/4 UT54LVDS031
All other combinations
of ENABLE inputs
PIN DESCRIPTION
Pin No.
1, 7, 9, 15
2, 6, 10, 14
3, 5, 11, 13
4
12
16
8
Name
D
IN
D
OUT+
D
OUT-
EN
EN
V
DD
V
SS
Figure 3. Point-to-Point Application
Description
Driver input pin, TTL/CMOS
compatible
Non-inverting driver output pin,
LVDS levels
Inverting driver output pin,
LVDS levels
Active high enable pin, OR-ed
with EN
Active low enable pin, OR-ed
with EN
Power supply pin, +5V + 10%
Ground pin
The UT54LVDS031 differential line driver is a balanced current
source design. A current mode driver, has a high output
impedance and supplies a constant current for a range of loads
(a voltage mode driver on the other hand supplies a constant
voltage for a range of loads). Current is switched through the
load in one direction to produce a logic state and in the other
direction to produce the other logic state. The current mode
requires
(as discussed above) that a resistive termination be
employed to terminate the signal and to complete the loop as
shown in Figure 3. AC or unterminated configurations are not
allowed. The 3.4mA loop current will develop a differential
voltage of 340mV across the 100Ω termination resistor which
the receiver detects with a 240mV minimum differential noise
margin neglecting resistive line losses (driven signal minus
receiver threshold (340mV - 100mV = 240mV)). The signal is
centered around +1.2V (Driver Offset, V
OS
) with respect to
ground as shown in Figure 4.
Note:
The steady-state voltage
(V
SS
) peak-to-peak swing is twice the differential voltage (V
OD
)
and is typically 680mV.
2
3V
D
IN
D
OUT-
SINGLE-ENDED
D
OUT+
V
0D
0V
V
OH
V
OS
V
OL
+V
OD
0V (DIFF.)
0V
-V
OD
D
OUT+
- D
OUT-
DIFFERENTIAL OUTPUT
Note: The footprint of the UT54LVDS031 is the same as the in-
dustry standard Quad Differential (RS-422) Driver.
V
SS
The current mode driver provides substantial benefits over
voltage mode drivers, such as an RS-422 driver. Its quiescent
current remains relatively flat versus switching frequency.
Whereas the RS-422 voltage mode driver increases
exponentially in most cases between 20 MHz - 50 MHz. This is
due to the overlap current that flows between the rails of the
device when the internal gates switch. Whereas the current mode
driver switches a fixed current between its output without any
substantial overlap current. This is similar to some ECL and
PECL devices, but without the heavy static I
CC
requirements of
the ECL/PECL design. LVDS requires 80% less current than
similar PECL devices. AC specifications for the driver are a
tenfold improvement over other existing RS-422 drivers.
The Three-State function allows the driver outputs to be
disabled, thus obtaining an even lower power state when the
transmission of data is not required.
Figure 4. Driver Output Levels
3
OPERATIONAL ENVIRONMENT
PARAMETER
Total Ionizing Dose (TID)
Single Event Latchup (SEL)
Neutron Fluence
1
Notes:
1. Guarnteed but not tested.
LIMIT
1.0E6
>100
1.0E13
UNITS
rad(Si)
MeV-cm
2
/mg
n/cm
2
ABSOLUTE MAXIMUM RATINGS
1
(Referenced to V
SS
)
SYMBOL
V
DD
V
I/O
T
STG
P
D
T
J
Θ
JC
I
I
PARAMETER
DC supply voltage
Voltage on any pin
Storage temperature
Maximum power dissipation
Maximum junction temperature
2
Thermal resistance, junction-to-case
3
DC input current
LIMITS
-0.3 to 6.0V
-0.3 to (V
DD
+ 0.3V)
-65 to +150°C
1.25 W
+150°C
10°C/W
±
10mA
Notes:
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability and performance.
2. Maximum junction temperature may be increased to +175°C during burn-in and steady-static life.
3. Test per MIL-STD-883, Method 1012.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
V
DD
T
C
V
IN
PARAMETER
Positive supply voltage
Case temperature range
DC input voltage
LIMITS
4.5 to 5.5V
-55 to +125°C
0V to V
DD
4
DC ELECTRICAL CHARACTERISTICS*
1, 2
(V
DD
= 5.0V +10%; -55°C < T
C
< +125°C); Unless otherwise noted, Tc is per the temperature range ordered
SYMBOL
V
IH
V
IL
V
OL
V
OH
I
IN4
V
OD1
ΔV
OD1
V
OS
ΔV
OS
V
CL3
I
OS3
I
OZ4
I
CCL4
I
CCZ4
PARAMETER
High-level input voltage
Low-level input voltage
Low-level output voltage
High-level output voltage
Input leakage current
Differential Output Voltage
Change in Magnitude of V
OD
for
Complementary Output States
Offset Voltage
(TTL)
(TTL)
R
L
= 100Ω
R
L
= 100Ω
V
IN
= V
DD
R
L
= 100Ω
(figure 5)
R
L
= 100Ω
(figure 5)
Voh + Vol
-
R
L
= 100Ω,
Vos = --------------------------
2
CONDITION
MIN
2.0
V
SS
0.90
MAX
V
DD
0.8
UNIT
V
V
V
1.60
-10
250
+10
400
10
1.125
1.375
V
μA
mV
mV
V
Change in Magnitude of V
OS
for
Complementary Output States
Input clamp voltage
Output Short Circuit Current
Output Three-State Current
R
L
= 100Ω
(figure 5)
I
CL
= -18mA
V
OUT
= 0V
2
EN = 0.8V and EN = 2.0 V,
V
OUT
= 0V or V
DD
R
L
= 100Ω all channels
V
IN
= V
DD
or V
SS
(all inputs)
D
IN
= V
DD
or V
SS
EN = V
SS
, EN = V
DD
-10
25
-1.5
5.0
+10
mV
V
mA
μΑ
Loaded supply current drivers
enabled
Loaded supply current drivers
disabled
mA
25.0
mA
10.0
Notes:
* For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25
o
C per MIL-STD-883 Method 1019, Condition
A up to the maximum TID level procured.
1. Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except differential voltages.
2. Output short circuit current (I
OS
) is specified as magnitude only, minus sign indicates direction only.
3. Guaranteed by characterization.
4. Devices are tested @ V
DD
= 5.5V only.
5
查看更多>
热门器件
热门资源推荐
器件捷径:
00 01 02 03 04 05 06 07 08 09 0A 0C 0F 0J 0L 0M 0R 0S 0T 0Z 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 1H 1K 1M 1N 1P 1S 1T 1V 1X 1Z 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 2G 2K 2M 2N 2P 2Q 2R 2S 2T 2W 2Z 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 3G 3H 3J 3K 3L 3M 3N 3P 3R 3S 3T 3V 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4M 4N 4P 4S 4T 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5E 5G 5H 5K 5M 5N 5P 5S 5T 5V 60 61 62 63 64 65 66 67 68 69 6A 6C 6E 6F 6M 6N 6P 6R 6S 6T 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7M 7N 7P 7Q 7V 7W 7X 80 81 82 83 84 85 86 87 88 89 8A 8D 8E 8L 8N 8P 8S 8T 8W 8Y 8Z 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9F 9G 9H 9L 9S 9T 9W
需要登录后才可以下载。
登录取消