首页 > 器件类别 > 存储

5962D9960601TXA

Standard SRAM, 512KX8, 100ns, CMOS, CDFP36, BOTTOM BRAZED, SHIELDED, FP-36

器件类别:存储   

厂商名称:Cobham Semiconductor Solutions

下载文档
器件参数
参数名称
属性值
是否Rohs认证
不符合
厂商名称
Cobham Semiconductor Solutions
零件包装代码
DFP
包装说明
DFP,
针数
36
Reach Compliance Code
unknown
ECCN代码
3A001.A.2.C
Is Samacsys
N
最长访问时间
100 ns
JESD-30 代码
R-CDFP-F36
JESD-609代码
e0
长度
23.368 mm
内存密度
4194304 bit
内存集成电路类型
STANDARD SRAM
内存宽度
8
功能数量
1
端子数量
36
字数
524288 words
字数代码
512000
工作模式
ASYNCHRONOUS
最高工作温度
125 °C
最低工作温度
-55 °C
组织
512KX8
封装主体材料
CERAMIC, METAL-SEALED COFIRED
封装代码
DFP
封装形状
RECTANGULAR
封装形式
FLATPACK
并行/串行
PARALLEL
峰值回流温度(摄氏度)
NOT SPECIFIED
认证状态
Not Qualified
筛选级别
MIL-PRF-38535 Class T
座面最大高度
4.4196 mm
最大供电电压 (Vsup)
5.5 V
最小供电电压 (Vsup)
4.5 V
标称供电电压 (Vsup)
5 V
表面贴装
YES
技术
CMOS
温度等级
MILITARY
端子面层
TIN LEAD
端子形式
FLAT
端子节距
1.27 mm
端子位置
DUAL
处于峰值回流温度下的最长时间
NOT SPECIFIED
总剂量
10k Rad(Si) V
宽度
12.192 mm
Base Number Matches
1
文档预览
Standard Products
QCOTS
TM
UT7Q512 512K x 8 SRAM
Data Sheet
April, 2002
FEATURES
q
100ns (5 volt supply) maximum address access time
q
Asynchronous operation for compatibility with industry-
standard 512K x 8 SRAMs
q
TTL compatible inputs and output levels, three-state
bidirectional data bus
q
Typical radiation performance
- Total dose: 30krad(Si)
- 30krad(Si) to 300krad(Si), depending on orbit, using
Aeroflex UTMC patented shielded package
- SEL Immune >80 MeV-cm
2
/mg
- LET
TH
(0.25) = 5MeV-cm
2
/mg
- Saturated Cross Section (cm
2
) per bit, ~1.0E-7
- 1.5E-7 errors/bit-day, Adams 90% geosynchronous
heavy ion
q
Packaging options:
- 32-lead ceramic flatpack (weight 2.5-2.6 grams)
- 36-lead flatpack shielded (weight 10.77 grams)
q
Standard Microcircuit Drawing 5962-99606
- QML T and Q compliant
INTRODUCTION
The QCOTS
TM
UT7Q512 Quantified Commercial Off-the-
Shelf product is a high-performance CMOS static RAM
organized as 524,288 words by 8 bits. Easy memory
expansion is provided by an active LOW Chip Enable (E),
an active LOW Output Enable (G), and three-state drivers.
This device has a power-down feature that reduces power
consumption by more than 90% when deselected
.
Writing to the device is accomplished by taking the Chip
Enable One ( E) input LOW and the Write Enable ( W) input
LOW. Data on the eight I/O pins (DQ
0
through DQ
7
) is then
written into the location specified on the address pins (A
0
through A
1 8
). Reading from the device is accomplished by
taking Chip Enable One (E) and Output Enable (G) LOW
while forcing Write Enable (W) HIGH. Under these
conditions, the contents of the memory location specified
by the address pins will appear on the eight I/O pins.
The eight input/output pins (DQ
0
through DQ
7
) are placed
in a high impedance state when the device is deselected (E,
HIGH), the outputs are disabled (G HIGH), or during a write
operation (E LOW and W LOW).
Clk. Gen.
A
0
A1
A2
A3
A4
A5
A6
A
7
A8
A
9
Pre-Charge Circuit
Row Select
Memory Array
1024 Rows
512x8 Columns
I/O Circuit
Column Select
Data
Control
CLK
Gen.
A
10
A11
A
12
A
13
A
14
A
15
A
16
A
17
A
18
D
0
- DQ
7
Q
E
W
G
Figure 1. UT7Q512 SRAM Block Diagram
PIN NAMES
A(18:0)
DQ(7:0)
E
W
G
V
DD
V
SS
Address
Data Input/Output
Chip Enable
Write Enable
Output Enable
Power
Ground
DEVICE OPERATION
The UT7Q512 has three control inputs called Enable 1 ( E), Write
Enable ( W), and Output Enable (G); 19 address inputs, A(18:0);
and eight bidirectional data lines, DQ(7:0). The E Device Enable
controls device selection, active, and standby modes. Asserting
E enables the device, causes I
DD
to rise to its active value, and
decodes the 19 address inputs to select one of 524,288 words in
the memory. W controls read and write operations. During a
read cycle, G must be asserted to enable the outputs.
Table 1. Device Operation Truth Table
G
X
1
W
X
0
1
1
E
1
0
0
0
I/O Mode
3-state
Data in
3-state
Data out
Mode
Standby
Write
Read
2
Read
A18
A16
A14
A12
A7
A6
A5
A4
V
D D
V
SS
A3
A2
A1
A0
DQ0
DQ1
DQ2
DQ3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
NC
A15
A17
W
A13
A8
A9
A11
V
S S
V
D D
G
A10
E
DQ7
DQ6
DQ5
DQ4
NC
X
1
0
Notes:
1. “X” is defined as a “don’t care” condition.
2. Device active; outputs disabled.
READ CYCLE
A combination of W greater than V
IH
(min), G and E less than
V
IL
(max) defines a read cycle. Read access time is measured
from the latter of Device Enable, Output Enable, or valid address
to valid data output.
SRAM read Cycle 1, the Address Access in figure 3a, is initiated
by a change in address inputs while the chip is enabled with G
asserted and W deasserted. Valid data appears on data outputs
DQ(7:0) after the specified t
AVQV
is satisfied. Outputs remain
active throughout the entire cycle. As long as Device Enable and
Output Enable are active, the address inputs may change at a
rate equal to the minimum read cycle time (t
AVAV
).
SRAM read Cycle 2, the Chip Enable-Controlled Access in
figure 3b, is initiated by E going active while G remains asserted,
W remains deasserted, and the addresses remain stable for the
entire cycle. After the specified t
ETQV
is satisfied, the eight-bit
word addressed by A(18:0) is accessed and appears at the data
outputs DQ(7:0).
SRAM read Cycle 3, the Output Enable-Controlled Access in
figure 3c, is initiated by G going active while E is asserted, W
is deasserted, and the addresses are stable. Read access time is
t
GLQV
unless t
AVQV
or t
ETQV
have not been satisfied.
Figure 2a. UT7Q512 100ns SRAM Shielded
Package Pinout (36)
A18
A16
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
V
SS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
V
D D
A15
A17
W
A13
A8
A9
A11
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
Figure 2b. UT7Q512 100ns SRAM
Package Pinout (32)
2
WRITE CYCLE
A combination of W less than V
IL
(max) and E less than
V
IL
(max) defines a write cycle. The state of G is a “don’t care”
for a write cycle. The outputs are placed in the high-impedance
state when either G is greater than V
IH
(min), or when W is less
than V
IL
(max).
Write Cycle 1, the Write Enable-Controlled A ccess in figure 4a,
is defined by a write terminated by W going high, with E still
active. The write pulse width is defined by t
WLWH
when the
write is initiated by W, and by t
ETWH
when the write is initiated
by E. Unless the outputs have been previously placed in the high-
impedance state byG, the user must wait t
WLQZ
before applying
data to the nine bidirectional pins DQ(7:0) to avoid bus
contention.
Write Cycle 2, the Chip Enable-Controlled Access in figure 4b,
is defined by a write terminated by the latter of E going inactive.
The write pulse width is defined by t
WLEF
when the write is
initiated by W, and by t
ETEF
when the write is initiated by the
E going active. For the W initiated write, unless the outputs have
been previously placed in the high-impedance state
by G, the user must wait t
WLQZ
before applying data to the eight
bidirectional pins DQ(7:0) to avoid bus contention.
TYPICAL RADIATION HARDNESS
Table 2. Typical Radiation Hardness
Design Specifications
1
Total Dose
Heavy Ion
Error Rate
2
30
1.5E-7
krad(Si) nominal
Errors/Bit-Day
Notes:
1. The SRAM will not latchup during radiation exposure under recommended
operating conditions.
2. 9 0% worst case particle environment, Geosynchronous orbit, 100 m ils of
Aluminum.
3
ABSOLUTE MAXIMUM RATINGS
1
(Referenced to V
SS
)
SYMBOL
V
DD
V
I/O
T
STG
P
D
T
J
Θ
JC
I
I
PARAMETER
DC supply voltage
Voltage on any pin
Storage temperature
Maximum power dissipation
Maximum junction temperature
2
Thermal resistance, junction-to-case
3
DC input current
LIMITS
-0.5 to 7.0V
-0.5 to 7.0V
-65 to +150°C
1.0W
+150°C
10°C/W
±
10 mA
Notes:
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability and performance.
2. Maximum junction temperature may be increased to +175°C during burn-in and steady-static life.
3. Test per MIL-STD-883, Method 1012.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
V
DD
T
C
V
IN
PARAMETER
Positive supply voltage
Case temperature range
DC input voltage
LIMITS
4.5 to 5.5V
-55 to +125°C
0V to V
DD
4
DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*
(V
DD
= 5.0V±10%) (-55°C to +125°C)
SYMBOL
V
IH
V
IL
V
OL
V
OH
C
IN 1
C
IO 1
I
IN
I
OZ
PARAMETER
High-level input voltage
Low-level input voltage
Low-level output voltage
High-level output voltage
Input capacitance
Bidirectional I/O capacitance
Input leakage current
Three-state output leakage current
I
OL
= 2.1mA,V
DD
=4.5V
I
OH
= -1mA,V
DD
=4.5V
ƒ
= 1MHz @ 0V
ƒ
= 1MHz @ 0V
V
SS
< V
IN
< V
DD
, V
DD
= V
DD
(max)
0V < V
O
< V
DD
V
DD
= V
DD
(max)
G = V
DD
(max)
I
OS 2, 3
I
DD
(OP)
Short-circuit output current
Supply current operating
@ 1MHz
0V <V
O
<V
DD
Inputs: V
IL
= V
SS
+ 0.8V,
V
IH
= 2.2V
I
OUT
= 0mA
V
DD
= V
DD
(max)
I
DD1
(OP)
Supply current operating
@10MHz
Inputs: V
IL
= V
SS
+ 0.8V,
V
IH
= 2.2V
I
OUT
= 0mA
V
DD
= V
DD
(max)
I
DD2
(SB)
Nominal standby supply current
@0MHz
Inputs: V
IL
= V
SS
I
OUT
= 0mA
E = V
DD
- 0.5
V
DD
= V
DD
(max)
V
IH
= V
DD
- 0.5V
Notes:
* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019 .
1. Measured only for initial qualification and after process or design changes that could affect input/output capacitance.
2. Supplied as a design limit but not guaranteed or tested.
3. Not more than one output may be shorted at a time for maximum duration of one second.
CONDITION
MIN
2.2
MAX
UNIT
V
.8
0.4
2.4
10
10
-2
-2
2
2
V
V
V
pF
pF
µA
µA
-80
80
50
mA
mA
100
mA
-55°C and
25°C
+125°C
35
1
µA
mA
5
查看更多>
热门器件
热门资源推荐
器件捷径:
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SX SY SZ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP TQ TR TS TT TU TV TW TX TY TZ U0 U1 U2 U3 U4 U6 U7 U8 UA UB UC UD UE UF UG UH UI UJ UK UL UM UN UP UQ UR US UT UU UV UW UX UZ V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 VA VB VC VD VE VF VG VH VI VJ VK VL VM VN VO VP VQ VR VS VT VU VV VW VX VY VZ W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 WA WB WC WD WE WF WG WH WI WJ WK WL WM WN WO WP WR WS WT WU WV WW WY X0 X1 X2 X3 X4 X5 X7 X8 X9 XA XB XC XD XE XF XG XH XK XL XM XN XO XP XQ XR XS XT XU XV XW XX XY XZ Y0 Y1 Y2 Y4 Y5 Y6 Y9 YA YB YC YD YE YF YG YH YK YL YM YN YP YQ YR YS YT YX Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z8 ZA ZB ZC ZD ZE ZF ZG ZH ZJ ZL ZM ZN ZP ZR ZS ZT ZU ZV ZW ZX ZY
需要登录后才可以下载。
登录取消