首页 > 器件类别 > 模拟混合信号IC > 驱动程序和接口

5962G153401QXC

Line Driver, 3 Func, 3 Driver, FP-48

器件类别:模拟混合信号IC    驱动程序和接口   

厂商名称:Cobham Semiconductor Solutions

下载文档
器件参数
参数名称
属性值
厂商名称
Cobham Semiconductor Solutions
零件包装代码
DFP
包装说明
DFP,
针数
48
Reach Compliance Code
unknown
ECCN代码
3A001.A.1.A
差分输出
YES
驱动器位数
3
输入特性
STANDARD
接口集成电路类型
LINE DRIVER
接口标准
EIA-644; TIA-644
JESD-30 代码
R-XDFP-F48
JESD-609代码
e4
长度
15.748 mm
功能数量
3
端子数量
48
最高工作温度
125 °C
最低工作温度
-55 °C
封装主体材料
UNSPECIFIED
封装代码
DFP
封装形状
RECTANGULAR
封装形式
FLATPACK
认证状态
Not Qualified
筛选级别
MIL-PRF-38535 Class Q
座面最大高度
3.048 mm
最大供电电压
3.6 V
最小供电电压
3 V
标称供电电压
3.3 V
表面贴装
YES
温度等级
MILITARY
端子面层
GOLD
端子形式
FLAT
端子节距
0.635 mm
端子位置
DUAL
总剂量
500k Rad(Si) V
宽度
9.652 mm
文档预览
Standard Products
UT54LVDS217 Serializer
Advanced Data Sheet
May, 2002
FEATURES
q
q
q
q
q
q
q
q
q
q
q
15 to 75 MHz shift clock support
Low power consumption
Power-down mode <200µW (max)
Cold sparing all pins
Narrow bus reduces cable size and cost
Up to 1.575 Gbps throughput
Up to 197 Megabytes/sec bandwidth
325 mV (typ) swing LVDS devices for low EMI
PLL requires no external components
Rising edge strobe
Radiation-hardened design; total dose irradiation testing to
MIL-STD-883 Method 1019
- Total-dose: 300 krad(Si)
INTRODUCTION
The UT54LVDS217 Serializer converts 21 bits of CMOS/TTL
data into three LVDS (Low Voltage Differential Signaling) data
streams. A phase-locked transmit clock is transmitted in parallel
with the data streams over a fourth LVDS link. Every cycle of
the transmit clock 21 bits of input data are sampled and
transmitted.
At a transmit clock frequency of 75 MHz, 21 bits of TTL data
are transmitted at a rate of 525 Mbps per LVDS data channel.
Using a 75 MHz clock, the data throughput is 1.575 Gbit/s (197
Mbytes/sec).
The UT54LVDS217 Serializer allows the use of wide, high
speed TTL interfaces while reducing overall EMI and cable size.
All pins have Cold Spare buffers. These buffers will be high
impedance when V
DD
is tied to V
SS
.
- Latchup immune (LET > 100 MeV-cm
2
/mg)
q
Packaging options:
- 48-lead flatpack
q
Standard Microcircuit Drawing 5962-01534
- QML Q and V compliant part
q
Compatible with TIA/EIA-644 LVDS standard
21
CMOS/TTL INPUTS
TTL PARALLEL-TO-LVDS
TTL PARALLEL -TO-LVDS
DATA (LVDS)
TRANSMIT CLOCK IN
POWER DOWN
PLL
CLOCK (LVDS)
Figure 1. UT54LVDS217 Serializer Block Diagram
1
TxIN4
V
DD
TxIN5
TxIN6
GND
TxIN7
TxIN8
V
DD
TxIN9
TxIN10
GND
TxIN11
TxIN12
V
DD
TxIN13
TxIN14
GND
TxIN15
TxIN16
TxIN17
V
D D
TxIN18
TxIN19
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
UT54LVDS217
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
TxIN3
TxIN2
GND
TxIN1
TxIN0
N/C
LVDS GND
TxOUT0-
TxOUT0+
TxOUT1-
TxOUT1+
LVDS V
DD
LVDS GND
TxOUT2-
TxOUT2+
TxCLK OUT-
TxCLK OUT+
LVDS GND
PLL GND
PLL V
DD
PLL GND
PWR DWN
TxCLK IN
TxIN20
PIN DESCRIPTION
Pin Name
TxIN
TxOUT+
TxOUT-
TxCLK IN
TxCLK
OUT+
TxCLK OUT-
PWR DWN
I/O
I
O
O
I
O
O
I
No.
21
3
3
1
1
1
1
Description
TTL level input
Positive LVDS differential data output
Negative LVDS differential data output
TTL level clock input. The rising edge acts
as data strobe. Pin name TxCLK IN
Positive LVDS differential clock output
Negative LVDS differential clock output
TTL level input. Assertion (low input) TRI-
STATEs the clock and data outputs, ensur-
ing low current at power down.
Power supply pins for TTL inputs and logic
Ground pins for TTL inputs and logic
Power supply pins for PLL
Ground pins for PPL
Power supply pin for LVDS output
Ground pins for LVDS outputs
V
DD
GND
PLL V
DD
PLL GND
LVDS V
DD
LVDS GND
I
I
I
I
I
I
4
5
1
2
1
3
Figure 2. UT54LVDS217 Pinout
UT54LVDS217
TxIN
0
1
2
LVDS CABLE
MEDIA DEPENDENT DATA
(LVDS)
UT54LVDS218
RxOUT
0
1
2
CMOS/
TTL
18
19
20
18
19
20
CLOCK
(LVDS)
TxCLK
GND
PCB
SHIELD
Figure 3. UT54LVDS217 Typical Application
PCB
RxCLK
2
ABSOLUTE MAXIMUM RATINGS
1
(Referenced to V
SS
)
SYMBOL
V
DD
V
I/O
T
STG
P
D
T
J
Θ
JC
I
I
PARAMETER
DC supply voltage
Voltage on any pin
4
Storage temperature
Maximum power dissipation
Maximum junction temperature
2
Thermal resistance, junction-to-case
3
DC input current
LIMITS
-0.3 to 4.0V
-0.3 to (V
DD
+ 0.3V)
-65 to +150°C
2W
+150°C
10°C/W
±
10mA
Notes:
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability and performance.
2. Maximum junction temperature may be increased to +175°C during burn-in and lifetest.
3. Test per MIL-STD-883, Method 1012.
4. For cold spare mode (V
DD
= V
SS
), V
ID
may be 0.3V to the maximum recommended operating V
DD
+ 0.3V.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
V
DD,
P
LL
V
DD,
LVDS V
DD
T
C
V
IN
PARAMETER
Positive supply voltage
Case temperature range
DC input voltage
LIMITS
3.0 to 3.6V
-55 to +125°C
0V to V
DD
3
DC ELECTRICAL CHARACTERISTICS
1
(V
DD
= 3.3V-0.3V; -55°C < T
C
< +125°C)
SYMBOL
PARAMETER
CONDITION
MIN
MAX
UNIT
CMOS/TTL DC SPECIFICATIONS
V
IH
V
IL
I
IH
I
IL
V
CL
I
CS
High-level input voltage
Low-level input voltage
High-level input current
Low-level input current
Input clamp voltage
Cold Spare Leakage current
V
IN
= 3.6V; V
DD
= 3.6V
V
IN
= 0V; V
DD
= 3.6V
I
CL
= -18mA
V
IN
= 3.6V; V
DD
= V
SS
-20
2.0
GND
-10
-10
V
DD
0.8
+10
+10
-1.5
+20
V
V
µA
µA
V
µA
LVDS OUTPUT DC SPECIFICATIONS (OUT+, OUT-)
V
OD 5
∆V
OD 5
V
OS 5
∆V
OS 5
I
OZ 4
I
CSOUT
I
OS2,3
Differential Output Voltage
Change in V
OD
between
complimentary output states
Offset Voltage
R
L
= 100Ω (See Figure 14)
R
L
= 100Ω (See Figure 14)
R
L
= 100Ω,
Vos = Voh + Vol
---------------------------
2
R
L
= 100Ω
PWR DWN = 0V
V
OUT
= 0V or V
DD
V
IN
=3.6V, V
DD
= V
SS
V
OUT
+ or V
OUT -
= 0V
-10
1.120
250
400
35
1.410
mV
mV
V
Change in V
OS
between
complimentary output states
Output Three-State Current
35
+10
mV
µΑ
µΑ
mA
Cold Spare Leakage Current
Output Short Circuit Current
-20
+20
5mA
Supply Current
I
CCL 4
I
CCZ 4,6
Transmitter supply current with
loads
Power down current
R
L
= 100Ω all channels
(figure 4)
CL = 5pF, f = 75MHz
D
IN
= V
SS
PWR DWN = 0V, f = 0Hz
Notes:
1. Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenc ed to ground.
2. Output short circuit current (I
OS
) is specified as magnitude only, minus sign indicates direction only. Only one output should be shorted at a time, do not exceed
maximum junction temperature specification.
3. Guaranteed by characterization.
4. Devices are tested @ 3.6V only.
5. Clock outputs guaranteed by design.
6. Post 100Krad, I
CCZ
= 200µA, post 300Krad, I
CCZ
= 700
µA.
65.0
mA
60.0
µA
4
AC SWITCHING CHARACTERISTICS
1
(V
DD
= 3.0V to 3.6V; TA = -55°C to +125°C)
SYMBOL
LLHT
2
LHLT
2
TPPos0
2
TPPos1
2
TPPos2
2
TPPos3
2
TPPos4
2
TPPos5
2
TPPos6
2
TCCS
3
TCIP
TCIH
4
TCIL
4
TSTC
2
THTC
2
TCCD
TPLLS
TPDD
PARAMETER
LVDS Low-to-High Transition Time (Figure 5)
LVDS High-to-Low Transition Time (Figure 5)
Transmitter Output Pulse Position for Bit 0 (Figure 13)
Transmitter Output Pulse Position for Bit 1(Figure 13)
Transmitter Output Pulse Position for Bit 2 (Figure 13)
Transmitter Output Pulse Position for Bit 3 (Figure 13)
Transmitter Output Pulse Position for Bit 4 (Figure 13)
Transmitter Output Pulse Position for Bit 5 (Figure 13)
Transmitter Output Pulse Position for Bit 6 (Figure 13)
Channel to Channel skew (Figure 7)
TxCLK IN Period (Figure 8)
TxCLK IN High Time (Figure 8)
TxCLK IN Low Time (Figure 8)
TxIN Setup to TxCLK IN (Figure 8) f=75MHz
TxIN Hold to TxCLK IN (Figure 8) f=75MHz
TxCLK IN to TxCLK OUT Delay (Figure 9)
Transmitter Phase Lock Loop Set (Figure 10)
Transmitter Powerdown Delay (Figure 12)
13.33
0.35Tcip
0.35Tcip
2.5
1.5
0.5
2.5
10
100
f=75MHz
f=75MHz
f=75MHz
f=75MHz
f=75MHz
f=75MHz
f=75MHz
0.08
1.98
3.88
5.78
7.68
9.58
11.54
MIN
MAX
1.5
1.5
0.53
2.43
4.43
6.23
8.13
10.03
11.93
0.45
66.7
0.65Tcip
0.65Tcip
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ms
ns
Notes:
1. Recommend transistion time for TXCLK In is 1.0 to 6.0 ns (figure 6).
2. Guaranteed by characterization.
3. Channel to channel skew is defined as the difference between TPPOS max limit and TPPOS minimum limit.
4. Guaranteed by design.
5
查看更多>
屏蔽技术浅谈(转贴)
屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射...
frozenviolet 汽车电子
【TI首届低功耗设计大赛】试玩Hijack(2):曼彻斯特编码的产生
本帖最后由 sacq 于 2014-11-9 12:48 编辑 在曼彻斯特编码中,每一位的中间...
sacq 微控制器 MCU
【晒样片】+ HDC1000样片申请路
本帖最后由 yichun417 于 2015-3-26 14:26 编辑 看到其他伙伴发的帖子...
yichun417 微控制器 MCU
请教一下,下面这个电路的带宽是如何计算的?麻烦大家帮忙解析一下这个电路,谢谢!
请教一下,下面这个电路的带宽是如何计算的?麻烦大家帮忙解析一下这个电路,谢谢! 这是图片 ...
jiajie270 模拟电子
求助,关于4152 LCD外部电阻分压方式的设置。
版主及各位大侠: 我在使用4152芯片,现在为了降功耗,所以将LCD驱动使用外部电阻分压分式,分...
ahoo 模拟与混合信号
CDMA1x移动车载视频监控管理系统
1 设计要求 1.1 技术设计要求 采用2卡或4卡CDMA1x无线网络进行实时视频传输, ...
ljy_8247 安防电子
热门器件
热门资源推荐
器件捷径:
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT BU BV BW BX BY BZ C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CO CP CQ CR CS CT CU CV CW CX CY CZ D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DO DP DQ DR DS DT DU DV DW DX DZ
需要登录后才可以下载。
登录取消