首页 > 器件类别 > 存储 > 存储

5962H9215309QMC

Standard SRAM, 32KX8, 55ns, CMOS, CDIP28, CERAMIC, DIP-28

器件类别:存储    存储   

厂商名称:Cobham Semiconductor Solutions

下载文档
器件参数
参数名称
属性值
厂商名称
Cobham Semiconductor Solutions
零件包装代码
DIP
包装说明
DIP,
针数
28
Reach Compliance Code
unknown
ECCN代码
3A001.A.1.A
最长访问时间
55 ns
JESD-30 代码
R-GDIP-T28
JESD-609代码
e4
内存密度
262144 bit
内存集成电路类型
STANDARD SRAM
内存宽度
8
功能数量
1
端子数量
28
字数
32768 words
字数代码
32000
工作模式
ASYNCHRONOUS
最高工作温度
125 °C
最低工作温度
-55 °C
组织
32KX8
封装主体材料
CERAMIC, GLASS-SEALED
封装代码
DIP
封装形状
RECTANGULAR
封装形式
IN-LINE
并行/串行
PARALLEL
认证状态
Not Qualified
筛选级别
MIL-PRF-38535 Class Q
最大供电电压 (Vsup)
5.5 V
最小供电电压 (Vsup)
4.5 V
标称供电电压 (Vsup)
5 V
表面贴装
NO
技术
CMOS
温度等级
MILITARY
端子面层
GOLD
端子形式
THROUGH-HOLE
端子位置
DUAL
总剂量
1M Rad(Si) V
Base Number Matches
1
文档预览
Military Standard Products
UT7156 Radiation-Hardened 32K x 8 SRAM
Advanced Data Sheet
March 1997
FEATURES
40ns, 55ns, and 70ns maximum address access time
Asynchronous operation for compatibility with industry-
standard 32K x 8 SRAM
CMOS compatible inputs/outputs
Three-state bidirectional data bus
Low operating and standby current
Radiation-hardened process and design; total dose irradiation
testing to MIL-STD-883 Method 1019
- Total-dose: 1.0E6 rads(Si)
- Error Rate: 1.0E-10 errors/bit-day
- Latchup immune
QML Q and V compliant part
Packaging options:
- 36-pin 50-mil center flatpack (0.7 x 1.0)
- 28-pin 100-mil center DIP (0.600 x 1.4)
5-volt operation
Standard Microcircuit Drawing available 5962-92153
INTRODUCTION
The UT7156 SRAM is a high performance, asynchronous,
radiation-hardened, 32K x 8 random access memory
conforming to industry-standard fit, form, and function. The
UT7156 SRAM features fully static operation requiring no
external clocks or timing strobes. Implemented using an
advanced radiation-hardened process and a device enable/
disable function the UT7156 is a high performance, power-
saving SRAM. The combination of radiation-hardness, fast
access time, and low power consumption make UT7156
ideal for high-speed systems designed for operation in
radiation environments.
INPUT
DRIVER
TOP/BOTTOM
DECODER
A(14:0)
INPUT
DRIVERS
BLOCK
DECODER
INPUT
DRIVERS
ROW
DECODER
MEMORY
ARRAY
INPUT
DRIVERS
COLUMN
DECODER
COLUMN
I/O
DATA
WRITE
CIRCUIT
DATA
READ
CIRCUIT
INPUT
DRIVERS
DQ(7:0)
E1
E2
G
W
CHIP ENABLE
OUTPUT
DRIVERS
OUTPUT ENABLE
WRITE ENABLE
Figure 1. SRAM Functional Block Diagram
V
SS
V
DD
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
NC
V
DD
V
SS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
V
SS
V
DD
W
E2
A13
A8
A9
A11
G
A10
E1
DQ7
DQ6
DQ5
DQ4
DQ3
V
DD
V
SS
DEVICE OPERATION
The UT7156 has four control inputs called Enable 1 (E1), Enable
2 (E2), Write Enable (W), and Output Enable (G); 15 address
inputs, A(14:0); and eight bidirectional data lines, DQ(7:0). E1
and E2 are device enable inputs that control device selection,
active, and standby modes. Asserting both E1 and E2 enables
the device, causes I
DD
to rise to its active value, and decodes the
15 address inputs to select one of 32,768 words in the memory.
W controls read and write operations. During a read cycle, G
must be asserted to enable the outputs.
Table 1. Device Operation Truth Table
G
W
X
X
0
1
1
E1
X
1
0
0
0
E2
3
0
X
1
1
1
I/O Mode
3-state
3-state
Data in
3-state
Data out
Mode
Standby
Standby
Write
Read
2
Read
Figure 2a. SRAM Pinout (36)
X
1
X
X
1
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
V
SS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
V
DD
W
A13
A8
A9
A11
G
A10
E1
DQ7
DQ6
DQ5
DQ4
DQ3
0
Notes:
1. “X” is defined as a “don’t care” condition.
2. Device active; outputs disabled.
3. Tied active (i.e., logic 1) in the 28-pin DIP package.
READ CYCLE
A combination of W greater than V
IH
(min), E1 less than V
IL
(max), and E2 greater than V
IH
(min) defines a read cycle. Read
access time is measured from the latter of device enable, output
enable, or valid address to valid data output.
Read Cycle 1, the Address Access read in figure 3a, is initiated
by a change in address inputs while the chip is enabled with G
asserted and W deasserted. Valid data appears on data outputs
DQ(7:0) after the specified t
AVQV
is satisfied. Outputs remain
active throughout the entire cycle. As long as device enable and
output enable are active, the address inputs may change at a rate
equal to the minimum read cycle time (t
AVAV
).
Read Cycle 2, the Chip Enable-controlled Access in figure 3b,
is initiated by the latter of E1 and E2 going active while G
remains asserted, W remains deasserted, and the addresses
remain stable for the entire cycle. After the specified t
ETQV
is
satisfied, the eight-bit word addressed by A(14:0) is accessed
and appears at the data outputs DQ(7:0).
Read Cycle 3, the Output Enable-controlled Access in figure 3c,
is initiated by G going active while E1 and E2 are asserted, W
is deasserted, and the addresses are stable. Read access time is
t
GLQV
unless t
AVQV
or t
ETQV
have not been satisfied.
Figure 2b. SRAM Pinout (28)
PIN NAMES
A(14:0)
DQ(7:0)
E1
E2
1
Address
Data Input/Output
Enable 1
Enable 2
W
G
Write
Output Enable
V
DD
Power
V
SS
Ground
1. 36-lead flatpack only.
2
WRITE CYCLE
A combination of W less than V
IL
(max), E1 less than V
IL
(max),
and E2 greater than V
IH
(min) defines a write cycle. The state of
G is a “don’t care” for a write cycle. The outputs are placed in
the high-impedance state when either G is greater than
V
IH
(min), or when W is less than V
IL
(max).
Write Cycle 1, the Write Enable-controlled Access shown in
figure 4a, is defined by a write terminated by W going high, with
E1 and E2 still active. The write pulse width is defined by t
WLWH
when the write is initiated by W, and by t
ETWH
when the write
is initiated by the latter of E1 or E2. Unless the outputs have
been previously placed in the high-impedance state by G, the
user must wait t
WLQZ
before applying data to the eight
bidirectional pins DQ(7:0) to avoid bus contention.
Write Cycle 2, the Chip Enable-controlled Access shown in
figure 4b, is defined by a write terminated by the latter of E1 or
E2 going inactive. The write pulse width is defined by t
WLEF
when the write is initiated by W, and by t
ETEF
when the write
is initiated by the latter of E1 or E2 going active. For the W
initiated write, unless the outputs have been previously placed
in the high-impedance state by G, the user must wait t
WLQZ
before applying data to the eight bidirectional pins DQ(7:0) to
avoid bus contention.
RADIATION HARDNESS
The UT7156 SRAM incorporates special design and layout
features which allow operation in high-level radiation
environments.
Table 2. Radiation Hardness
Design Specifications
1
Total Dose
Error Rate
2
1.0E6
1.0E-10
rads(Si)
Errors/Bit-Day
Notes:
1. The SRAM will not latchup during radiation exposure under recommended
operating conditions.
2. 10% worst case particle environment, Geosynchronous orbit, 0.025 mils of
Aluminum.
3
ABSOLUTE MAXIMUM RATINGS
1
(Referenced to V
SS
)
SYMBOL
V
DD
V
I/O
T
STG
P
D
T
J
Θ
JC
I
I
PARAMETER
DC supply voltage
Voltage on any pin
Storage temperature
Maximum power dissipation
Maximum junction temperature
2
Thermal resistance, junction-to-case
3
DC input current
LIMITS
-0.5 to 7.0V
-0.5 to (V
DD
+ 0.3)V
-65 to +150°C
2.0W
+150°C
10°C/W
±
10 mA
Notes:
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device
and
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. E
xposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2. Maximum junction temperature may be increased to +175C during burn-in and steady-static life.
°
3. Test per MIL-STD-883, Method 1012.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
V
DD
T
C
V
IN
PARAMETER
Positive supply voltage
Case temperature range
DC input voltage
LIMITS
4.5 to 5.5V
-55 to +125°C
0V to V
DD
4
DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*
(V
DD
= 5.0V±10%) (-55°C to +125°C)
SYMBOL
V
IH
V
IL
V
OL
V
OH
V
OH
C
IN1
C
IO1
I
IN
I
OZ
PARAMETER
High-level input voltage
Low-level input voltage
Low-level output voltage
High-level output voltage
High-level output voltage
Input capacitance
Bidirectional I/O capacitance
Input leakage current
Three-state output leakage current
(CMOS)
(CMOS)
I
OL
= 200µA, V
DD
= 4.5V (CMOS)
I
OH
= -200µA, V
DD
= 4.5V (CMOS)
I
OH
= -4mA, V
DD
= 4.5V (CMOS)
ƒ
= 1MHz @ 0V
ƒ
= 1MHz @ 0V
V
IN
= V
DD
and V
SS
V
O
= V
DD
and V
SS
V
DD
= 5.5V
G = 5.5V
I
OS2, 3
Short-circuit output current
V
DD
= 5.5V, V
O
= V
DD
V
DD
= 5.5V, V
O
= 0V
I
DD
(OP)
Supply current operating @1MHz
CMOS inputs (I
OUT
= 0)
V
DD
= 5.5V
I
DD1
(OP)
I
DD3
(SB)
4
Supply current operating
@ 25MHz
Supply current standby
@ 0Hz
CMOS inputs (I
OUT
= 0)
V
DD
= 5.5V
CMOS inputs (I
OUT
= 0)
E1 = V
DD
- 0.5, V
DD
= 5.5V
1.2
mA
120
mA
50
-90
+90
mA
mA
mA
-5
-10
V
DD
-0.05
4.2
4
7
5
10
CONDITION
MIN
3.5
1.5
0.05
MAX
UNIT
V
V
V
V
V
pF
pF
µA
µA
Notes:
* Post-radiation performance guaranteed at 25C per MIL-STD-883 Method 1019 at 5.0E rads(Si).
°
5
1. Measured only for initial qualification and after process or design changes that could affect input/output capacitance.
2. Supplied as a design limit but not guaranteed or tested.
3. Not more than one output may be shorted at a time for maximum duration of one second.
4. V
IH
= 5.5V, V
IL
= 0V.
5
查看更多>
热门器件
热门资源推荐
器件捷径:
00 01 02 03 04 05 06 07 08 09 0A 0C 0F 0J 0L 0M 0R 0S 0T 0Z 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 1H 1K 1M 1N 1P 1S 1T 1V 1X 1Z 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 2G 2K 2M 2N 2P 2Q 2R 2S 2T 2W 2Z 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 3G 3H 3J 3K 3L 3M 3N 3P 3R 3S 3T 3V 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4M 4N 4P 4S 4T 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5E 5G 5H 5K 5M 5N 5P 5S 5T 5V 60 61 62 63 64 65 66 67 68 69 6A 6C 6E 6F 6M 6N 6P 6R 6S 6T 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7M 7N 7P 7Q 7V 7W 7X 80 81 82 83 84 85 86 87 88 89 8A 8D 8E 8L 8N 8P 8S 8T 8W 8Y 8Z 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9F 9G 9H 9L 9S 9T 9W
需要登录后才可以下载。
登录取消