D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
74VCXH245
Low−Voltage 1.8/2.5/3.3 V
8−Bit Transceiver
(3−State, Non−Inverting with Bushold)
The 74VCXH245 is an advanced performance, non−inverting 8−bit
transceiver. It is designed for very high−speed, very low−power
operation in 1.8 V, 2.5 V or 3.3 V systems.
The 74VCXH245 is designed as a byte control. The
Transmit/Receive (T/Rn) inputs determine the direction of data flow
through the bidirectional transceiver. Transmit (active−HIGH) enables
data from A ports to B ports; Receive (active−LOW) enables data from
B to A ports. The Output Enable input (OE), when HIGH, disables
both A and B ports by placing them in a HIGH Z condition. The data
inputs include active bushold circuitry, eliminating the need for
external pullup resistors to hold unused or floating inputs at a valid
logic state.
Features
http://onsemi.com
MARKING
DIAGRAM
1
QFN
MNR2 SUFFIX
CASE 485AA
VCX
H245
ALYWG
G
•
Designed for Low Voltage Operation: V
CC
= 1.65−3.6 V
•
High Speed Operation: 3.5 ns max for 3.0 to 3.6 V
•
•
•
•
•
•
4.2 ns max for 2.3 to 2.7 V
8.4 ns max for 1.65 to 1.95 V
Static Drive:
±24
mA Drive at 3.0 V
±18
mA Drive at 2.3 V
±6
mA Drive at 1.65 V
Includes Active Bushold to Hold Unused or Floating Data Inputs at a
Valid Logic State
Near Zero Static Supply Current in All Three Logic States (20
mA)
Substantially Reduces System Power Requirements
Latchup Performance Exceeds
±200
mA @ 85°C
ESD Performance:
Human Body Model >2000 V
Machine Model >200 V
Pb−Free Package is Available
A
= Assembly Location
L
= Wafer Lot
Y
= Year
W
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
19
12
20
PIN #1
QFN
11
10
2
Pinout
(Top View)
9
ORDERING INFORMATION
Device
74VCXH245MNR2
74VCXH245MNR2G
Package
QFN
Shipping
†
3000/Tape&Reel
QFN
3000/Tape&Reel
(Pb−Free)
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
©
Semiconductor Components Industries, LLC, 2005
1
April, 2005 − Rev. 10
Publication Order Number:
74VCXH245/D
74VCXH245
OE 19
T/R 1
2
18
FUNCTION
Output Enable Input
Transmit/Receive Input
Side A Bushold Inputs or 3−State Outputs
Side B Bushold Inputs or 3−State Outputs
A1
3
17
A2
4
16
A3
5
15
OPERATING MODE
Non−Inverting
B Data to A Bus
A Data to B Bus
Z State
8
12
A7
9
11
V
CC
= Pin 20
GND = Pin 10
A5
7
13
A6
B5
A4
6
14
A0
PIN NAMES
PINS
OE
T/R
A0−A7
B0−B7
B0
B1
B2
TRUTH TABLE
INPUTS
OE
L
L
H
T/R
L
H
X
B3
B4
H = High Voltage Level
L = Low Voltage Level
Z = High Impedance State
X = High or Low Voltage Level and Transitions are Acceptable
B6
B7
Figure 1. Logic Diagram
ABSOLUTE MAXIMUM RATINGS
Symbol
V
CC
V
I
V
O
I
IK
I
OK
Parameter
DC Supply Voltage
DC Input Voltage
DC Output Voltage
DC Input Diode Current
DC Output Diode Current
Value
−0.5 to + 4.6
−0.5
≤
V
I
≤
V
CC
+ 0.5
−0.5
≤
V
O
≤
V
CC
+ 0.5
−50
−50
+50
I
O
I
CC
I
GND
T
STG
DC Output Source/Sink Current
DC Supply Current Per Supply Pin
DC Ground Current Per Ground Pin
Storage Temperature Range
±50
±100
±100
−65 to +150
Note 1
V
I
< GND
V
O
< GND
V
O
> V
CC
Condition
Unit
V
V
V
mA
mA
mA
mA
mA
mA
°C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. I
O
absolute maximum rating must be observed.
http://onsemi.com
2
74VCXH245
RECOMMENDED OPERATING CONDITIONS
(Note 2)
Symbol
V
CC
V
I
V
O
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
T
A
Dt/DV
Supply Voltage
Input Voltage
Output Voltage
HIGH Level Output Current, V
CC
= 3.0 V − 3.6 V
LOW Level Output Current, V
CC
= 3.0 V − 3.6 V
HIGH Level Output Current, V
CC
= 2.3 V − 2.7 V
LOW Level Output Current, V
CC
= 2.3 V − 2.7 V
HIGH Level Output Current, V
CC
= 1.65 V − 1.95 V
LOW Level Output Current, V
CC
= 1.65 V − 1.95 V
Operating Free−Air Temperature
Input Transition Rise or Fall Rate, V
IN
from 0.8 V to 2.0 V, V
CC
= 3.0 V
−40
0
Parameter
Operating
Data Retention Only
Min
1.65
1.2
−0.3
0
Typ
3.3
3.3
Max
3.6
3.6
V
CC
V
CC
−24
24
−18
18
−6
6
+85
10
Unit
V
V
V
mA
mA
mA
mA
mA
mA
°C
ns/V
2. Floating or unused control inputs must be held HIGH or LOW.
X
max
= 0.28
0.5
Pitch
0.65
1.45
2.8
3.45
All Dimensions in mm.
4.80
Figure 2. 20 Pad QFN Suggested Board Layout
(Bottom View)
http://onsemi.com
3
74VCXH245
DC ELECTRICAL CHARACTERISTICS
T
A
= −40°C to +85°C
Symbol
V
IH
Characteristic
HIGH Level Input Voltage (Note 3)
Condition
1.65 V
≤
V
CC
< 1.95 V
2.3 V
≤
V
CC
≤
2.7 V
2.7 V < V
CC
≤
3.6 V
V
IL
LOW Level Input Voltage (Note 3)
1.65 V
≤
V
CC
< 1.95 V
2.3 V
≤
V
CC
≤
2.7 V
2.7 V < V
CC
≤
3.6 V
V
OH
HIGH Level Output Voltage
1.65 V
≤
V
CC
≤
3.6 V; I
OH
= −100
mA
V
CC
= 1.65 V; I
OH
= −6 mA
V
CC
= 2.3 V; I
OH
= −6 mA
V
CC
= 2.3 V; I
OH
= −12 mA
V
CC
= 2.3 V; I
OH
= −18 mA
V
CC
= 2.7 V; I
OH
= −12 mA
V
CC
= 3.0 V; I
OH
= −18 mA
V
CC
= 3.0 V; I
OH
= −24 mA
V
OL
LOW Level Output Voltage
1.65 V
≤
V
CC
≤
3.6 V; I
OL
= 100
mA
V
CC
= 1.65 V; I
OL
= 6 mA
V
CC
= 2.3 V; I
OL
= 12 mA
V
CC
= 2.3 V; I
OL
= 18 mA
V
CC
= 2.7 V; I
OL
= 12 mA
V
CC
= 3.0 V; I
OL
= 18 mA
V
CC
= 3.0 V; I
OL
= 24 mA
I
I
I
I(HOLD)
(
)
Input Leakage Current
Minimum Bushold Input Current
V
IN
= V
CC
or GND; V
CC
= 3.6 V
V
CC
= 3.0 V, V
IN
= 0.8 V
V
CC
= 3.0 V, V
IN
= 2.0 V
V
CC
= 2.3 V, V
IN
= 0.7 V
V
CC
= 2.3 V, V
IN
= 1.6 V
V
CC
= 1.65 V, V
IN
= 0.57 V
V
CC
= 1.65 V, V
IN
= 1.07 V
I
I(OD)
( )
Minimum Bushold Over−Drive
Current Needed to Change State
V
CC
= 3.6 V, (Note 4)
V
CC
= 3.6 V, (Note 5)
V
CC
= 2.7 V, (Note 4)
V
CC
= 2.7 V, (Note 5)
V
CC
= 1.95 V, (Note 4)
V
CC
= 1.95 V, (Note 5)
I
OZ
I
CC
DI
CC
3.
4.
5.
6.
3−State Output Current
Quiescent Supply Current (Note 6)
Increase in I
CC
per Input
V
O
= V
CC
or GND; V
CC
= 3.6 V;
V
I
= V
IH
or V
IL
1.65 V
≤
V
CC
≤
3.6 V; V
I
= GND or V
CC
2.7 V < V
CC
≤
3.6 V; V
IH
= V
CC
− 0.6 V
75
−75
45
−45
25
−25
450
−450
300
−300
200
−200
±10
20
750
mA
mA
mA
mA
V
CC
− 0.2
1.25
2.0
1.8
1.7
2.2
2.4
2.2
0.2
0.3
0.4
0.6
0.4
0.4
0.55
±5.0
mA
mA
V
Min
0.65 x V
CC
1.6
2.0
0.35 x V
CC
0.7
0.8
V
V
Max
Unit
V
These values of V
I
are used to test DC electrical characteristics only.
An external driver must source at least the specified current to switch from LOW−to−HIGH.
An external driver must sink at least the specified current to switch from HIGH−to−LOW.
Outputs disabled or 3−state only.
http://onsemi.com
4