D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
Low Distortion, High Output Current Amplifiers
Operate from 12 V to 12 V Power Supplies,
Ideal for High-Performance ADSL CPE, and xDSL
Modems
Low Power Operation
9 mA/Amp (Typ) Supply Current
Digital (1-Bit) Power-Down
Voltage Feedback Amplifiers
Low Distortion
Out-of-Band SFDR –80 dBc @ 100 kHz into 100
Line
High Speed
175 MHz Bandwidth (–3 dB), G = +1
400 V/ s Slew Rate
High Dynamic Range
V
OUT
to within 1.2 V of Power Supply
APPLICATIONS
ADSL, VDSL, HDSL, and Proprietary xDSL USB, PCI,
PCMCIA Modems, and Customer Premise Equipment
(CPE)
PRODUCT DESCRIPTION
8-Lead SOIC
(R-8)
OUT1
–IN1
+IN1
–V
S
1
2
3
4
DSL Line Driver
with Power-Down
AD8019
PIN CONFIGURATIONS
14-Lead TSSOP
(RU-14)
+V
S
OUT2
–IN2
+IN2
NC
OUT1
–IN1
+IN1
–V
S
PWDN
NC
1
2
3
4
5
6
7
AD8019AR
8
7
6
5
AD8019ARU
14
13
12
11
10
9
8
NC
+V
S
OUT2
–IN2
+IN2
NC
DGND
NC = NO CONNECT
The AD8019 is a low cost xDSL line driver optimized to drive a
minimum of 13 dBm into a 100
Ω
load while delivering outstand-
ing distortion performance. The AD8019 is designed on a 24 V
high-speed bipolar process enabling the use of
±
12 V power
supplies or 12 V only. When operating from a single 12 V sup-
ply the highly efficient amplifier architecture can typically deliver
170 mA output current into low impedance loads through a
1:2 turns ratio transformer. Hybrid designs using
±
12 V supplies
enable the use of a 1:1 turns ratio transformer, minimizing attenu-
ation of the receive signal. The AD8019 typically draws 9 mA/
amplifier quiescent current. A 1-bit digital power down feature
reduces the quiescent current to approximately 1.6 mA/amplifier.
Figure 1 shows typical Out of Band SFDR performance under
ADSL CPE (upstream) conditions. SFDR is measured while
driving a 13 dBm ADSL DMT signal into a 100
Ω
line with
50
Ω
back termination.
The AD8019 comes in thermally enhanced 8-lead SOIC and
14-lead TSSOP packages. The 8-lead SOIC is pin-compatible
with the AD8017 12 V line driver.
10dB/DIV
–80dBc
132.5
137.5
FREQUENCY – kHz
142.5
Figure 1. Out-of-Band SFDR; V
S
=
±
12 V; 13 dBm Output
Power into 200
Ω
, Upstream
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2001
AD8019–SPECIFICATIONS
Parameter
DYNAMIC PERFORMANCE
–3 dB Bandwidth
(@ 25 C, V
S
= 12 V, R
L
= 25
otherwise noted.)
, R
F
= 500
, T
MIN
= –40 C, T
MAX
= +85 C, unless
Min
Typ
35
180
75
6
35
50
450
5.5
40
Max
Unit
MHz
MHz
MHz
MHz
MHz
MHz
V/µs
ns
ns
Conditions
G = +5
G = +1, V
OUT
< 0.4 V p-p, R
L
= 100
Ω
G = +2, V
OUT
< 0.4 V p-p, R
L
= 100
Ω
V
OUT
< 0.4 V p-p, R
L
= 100
Ω
G = +5, V
OUT
< 0.4 V p-p, R
L
= 100
Ω
V
OUT
= 4 V p-p
Noninverting, V
OUT
= 4 V p-p
Noninverting, V
OUT
= 2 V p-p
0.1%, V
OUT
= 2 V p-p
V
OUT
= 3 V p-p (Differential)
100 kHz, R
L(DM)
= 50
Ω
500 kHz, R
L(DM)
= 50
Ω
100 kHz, R
L(DM)
= 50
Ω
500 kHz, R
L(DM)
= 50
Ω
144 kHz–1.1 MHz, Differential R
L
= 70
Ω
25 kHz–138 kHz, Differential R
L
= 70
Ω
f = 100 kHz
f = 100 kHz
f = 1 MHz, G = +2
175
70
0.1 dB Bandwidth
Large Signal Bandwidth
Slew Rate
Rise and Fall Time
Settling Time
NOISE/DISTORTION PERFORMANCE
Distortion
Second Harmonic
Third Harmonic
Out-of-Band SFDR
MTPR
Input Voltage Noise
Input Current Noise
Crosstalk
DC PERFORMANCE
Input Offset Voltage
–78
–74
–85
–80
–80
–72
8
0.9
–80
8
10
1
2
80
80
10
0.5
+1
–0.5
–0.2
+0.1
74
10
0.2
20
23
12
17
dBc
dBc
dBc
dBc
dBc
dBc
nV/√Hz
pA√Hz
dB
mV
mV
mV
mV
dB
dB
MΩ
pF
µA
µA
µA
µA
µA
µA
µA
µA
dB
V
Ω
V
mA
mA
mA
mA
mA
V
dB
ns
ns
V
V
µA
µA
T
MIN
–T
MAX
Input Offset Voltage Match
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
+Input Bias Current
T
MIN
–T
MAX
–Input Bias Current
T
MIN
–T
MAX
+Input Bias Current Match
T
MIN
–T
MAX
–Input Bias Current Match
CMRR
Input CM Voltage Range
OUTPUT CHARACTERISTICS
Output Resistance
Output Voltage Swing
Output Current
Short Circuit Current
1
POWER SUPPLY
Supply Current/Amp
T
MIN
–T
MAX
∆V
CM
= –4 V to +4 V
T
MIN
–T
MAX
V
OUT
= 6 V p-p, R
L
= 25
Ω
T
MIN
–T
MAX
72
72
–3
–4
–1.5
–1.8
–1.0
–1.5
–0.5
–0.8
71
2
+3
+4
+1.5
+1.8
+1.0
+1.5
+0.5
+0.8
R
L
= 25
Ω
SFDR –80 dBc into 25
Ω
at 100 kHz
–4.8
175
+4.8
200
400
9
0.8
10.5
14.5
2.0
±
6.0
Operating Range
Power Supply Rejection Ratio
LOGIC LEVELS
t
ON
t
OFF
PWDN = “1” Voltage
PWDN = “0” Voltage
PWDN = “1” Bias Current
PWDN = “0” Bias Current
PWDN = 5 V
T
MIN
–T
MAX
PWDN = 0 V
Dual Supply
∆±V
S
= +1.0 V to –1.0 V
V
PWDN
= 0 V to 3 V; V
IN
= 10 MHz, G = +5
±
4.0
65
68
120
80
1.8
220
–100
+V
S
0.5
NOTES
1
This device is protected from overheating during a short-circuit by a thermal shutdown circuit.
Specifications subject to change without notice.
–2–
REV. 0
AD8019
(@ 25 C, V
S
=
Parameter
DYNAMIC PERFORMANCE
–3 dB Bandwidth
12 V, R
L
= 100
, R
F
= 500
, T
MIN
= –40 C, T
MAX
= +85 C, unless otherwise noted.)
Conditions
G = +5
G = +1, V
OUT
< 0.4 V p-p
G = +2, V
OUT
< 0.4 V p-p
V
OUT
< 0.4 V p-p
V
OUT
= 4 V p-p
Noninverting, V
OUT
= 4 V p-p
Noninverting, V
OUT
= 2 V p-p
0.1%, V
OUT
= 2 V p-p
V
OUT
= 16 V p-p (Differential)
100 kHz, R
L(DM)
= 200
Ω
500 kHz, R
L(DM)
= 200
Ω
100 kHz, R
L(DM)
= 200
Ω
500 kHz, R
L(DM)
= 200
Ω
144 kHz–500 kHz, Differential R
L
= 200
Ω
25 kHz–138 kHz, Differential R
L
= 200
Ω
f = 100 kHz
f = 100 kHz
f = 1 MHz, G = +2
Min
Typ
35
180
75
5.5
50
400
5.5
40
Max
Unit
MHz
MHz
MHz
MHz
MHz
V/µs
ns
ns
175
70
0.1 dB Bandwidth
Large Signal Bandwidth
Slew Rate
Rise and Fall Time
Settling Time
NOISE/DISTORTION PERFORMANCE
Distortion
Second Harmonic
Third Harmonic
Out-of-Band SFDR
MTPR
Input Voltage Noise
Input Current Noise
Crosstalk
DC PERFORMANCE
Input Offset Voltage
–80
–72
–85
–80
–80
–73
8
0.9
–85
5
10
1
2
92
90
10
0.5
–0.5
–0.2
+0.2
+0.1
76
+10
0.2
20
12
18
dBc
dBc
dBc
dBc
dBc
dBc
nV/√Hz
pA√Hz
dB
mV
mV
mV
mV
dB
dB
MΩ
pF
µA
µA
µA
µA
µA
µA
µA
µA
dB
V
Ω
V
mA
mA
mA
mA
mA
V
dB
ns
ns
V
V
µA
µA
T
MIN
–T
MAX
Input Offset Voltage Match
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
+Input Bias Current
T
MIN
–T
MAX
–Input Bias Current
T
MIN
–T
MAX
+Input Bias Current Match
T
MIN
–T
MAX
–Input Bias Current Match
CMRR
Input CM Voltage Range
OUTPUT CHARACTERISTICS
Output Resistance
Output Voltage Swing
Output Current
Short Circuit Current
1
POWER SUPPLY
Supply Current/Amp
T
MIN
–T
MAX
∆V
CM
= –10 V to +10 V
T
MIN
–T
MAX
V
OUT
= 18 V p-p, R
L
= 100
Ω
T
MIN
–T
MAX
86
–3
–3.8
–1.5
–1.7
–1.0
–2.4
–1.0
–2.5
71
–10
+3
+3.8
+1.5
+1.7
+1.0
+2.4
+1.0
+2.5
R
L
= 100
Ω
SFDR –80 dBc into 100
Ω
at 100 kHz
–10.8
125
+10.8
170
800
9
10
11.5
1.75
±
12
Operating Range
Power Supply Rejection Ratio
LOGIC LEVELS
t
ON
t
OFF
PWDN = “1” Voltage
PWDN = “0” Voltage
PWDN = “1” Bias Current
PWDN = “0” Bias Current
PWDN = High
T
MIN
–T
MAX
PWDN = Low
Dual Supply
∆±V
S
= +1.0 V to –1.0 V
V
PWDN
= 0 V to 3 V; V
IN
= 10 MHz, G = +5
±
4.0
61
0.8
64
120
80
1.8
220
–100
+V
S
0.5
NOTES
1
This device is protected from overheating during a short-circuit by a thermal shutdown circuit.
Specifications subject to change without notice.
REV. 0
–3–
AD8019
ABSOLUTE MAXIMUM RATINGS
1
MAXIMUM POWER DISSIPATION
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.4 V
Internal Power Dissipation
TSSOP-14 Package
2
. . . . . . . . . . . . . . . . . . . . . . . . . 2.2 W
SOIC-8 Package
3
. . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 W
Input Voltage (Common-Mode) . . . . . . . . . . . . . . . . . . . .
±
V
S
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . .
±
V
S
Output Short Circuit Duration
. . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves
Storage Temperature Range . . . . . . . . . . . . –65°C to +125°C
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Specification is for device on a four-layer board with 10 inches
2
of 1 oz. copper at
85°C 14-lead TSSOP package:
θ
JA
= 90°C/W.
3
Specification is for device on a four-layer board with 10 inches
2
of 1 oz. copper at
85°C 8-lead SOIC package:
θ
JA
= 100°C/W.
The maximum power that can be safely dissipated by the AD8019
is limited by the associated rise in junction temperature. The
maximum safe junction temperature for a plastic encapsulated
device is determined by the glass transition temperature of the
plastic, approximately 150°C. Temporarily exceeding this limit
may cause a shift in parametric performance due to a change in
the stresses exerted on the die by the package.
The output stage of the AD8019 is designed for maximum load
current capability. As a result, shorting the output to common
can cause the AD8019 to source or sink 500 mA. To ensure
proper operation, it is necessary to observe the maximum power
derating curves. Direct connection of the output to either power
supply rail can destroy the device.
2.5
MAXIMUM POWER DISSIPATION – W
2.0
TSSOP
1.5
1.0
SOIC
0.5
0
–40 –30 –20 –10 0
10 20 30 40 50
AMBIENT TEMPERATURE – C
60
70
80
Figure 2. Plot of Maximum Power Dissipation vs.
Temperature for AD8019 for T
J
= 150
°
C
ORDERING GUIDE
Model
AD8019ARU
AD8019ARU-Reel
AD8019ARU-EVAL
AD8019AR
AD8019AR-Reel
AD8019AR-EVAL
Temperature
Range
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
Package
Description
14-Lead TSSOP
14-Lead TSSOP
Evaluation Board
8-Lead SOIC
8-Lead SOIC
Evaluation Board
Package
Option
RU-14
RU-14 Reel
ARU-EVAL
R-8
R-8 Reel
AR EVAL
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD8019 features proprietary ESD protection circuitry, permanent damage may occur on
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
–4–
REV. 0