D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Low Cost, High Speed
Rail-to-Rail Amplifiers
AD8091/AD8092
FEATURES
Low cost single (AD8091) and dual (AD8092) amplifiers
Fully specified at +3 V, +5 V, and ±5 V supplies
Single-supply operation
Output swings to within 25 mV of either rail
High speed and fast settling on 5 V
110 MHz, −3 dB bandwidth (G = +1)
145 V/μs slew rate
50 ns settling time to 0.1%
Good video specifications (G = +2)
Gain flatness of 0.1 dB to 20 MHz; R
L
= 150 Ω
0.03% differential gain error; R
L
= 1 kΩ
0.03%differential phase error; R
L
= 1 kΩ
Low distortion
−80 dBc total harmonic @ 1 MHz; R
L
= 100 Ω
Outstanding load drive capability
Drives 45 mA, 0.5 V from supply rails
Drives 50 pF capacitive load (G = +1)
Low power of 4.4 mA per amplifier
CONNECTION DIAGRAMS
NC
1
–IN
2
+IN
3
–V
S 4
AD8091
8
7
6
5
NC
+V
S
V
OUT
02859-001
02859-002
NC
NC = NO CONNECT
Figure 1. SOIC-8 (R-8)
V
OUT 1
–V
S 2
+IN
3
4
AD8091
5
+V
S
02859-003
–IN
Figure 2. SOT23-5 (RJ-5)
OUT1
1
–IN1
2
+IN1
3
–V
S 4
AD8092
8
7
6
5
+V
S
OUT
–IN2
+IN2
APPLICATIONS
Coaxial cable drivers
Active filters
Video switchers
Professional cameras
CCD imaging systems
CDs/DVDs
Clock buffers
NC = NO CONNECT
Figure 3. MSOP-8 and SOIC-8 (RM-8, R-8)
GENERAL DESCRIPTION
The AD8091 (single) and AD8092 (dual) are low cost, voltage
feedback, high speed amplifiers designed to operate on +3 V,
+5 V, or ±5 V supplies. The AD8091/AD8092 have true single-
supply capability, with an input voltage range extending 200 mV
below the negative rail and within 1 V of the positive rail.
Despite their low cost, the AD8091/AD8092 provide excellent
overall performance and versatility. The output voltage swing
extends to within 25 mV of each rail, providing the maximum
output dynamic range with excellent overdrive recovery. This
makes the AD8091/AD8092 useful for video electronics, such
as cameras, video switchers, or any high speed portable equip-
ment. Low distortion and fast settling make them ideal for
active filter applications.
The AD8091/AD8092 offer a low power supply current and can
operate on a single 3 V power supply. These features are ideally
suited for portable and battery-powered applications where size
and power are critical.
The wide bandwidth and fast slew rate make these amplifiers
useful in many general-purpose, high speed applications where
dual power supplies of up to ±6 V and single supplies from +3
V to +12 V are needed.
This low cost performance is offered in an 8-lead SOIC
(AD8091/AD8092), a tiny SOT23-5 (AD8091), and an MSOP
(AD8092).
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.
AD8091/AD8092
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications....................................................................................... 1
Connection Diagrams...................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Maximum Power Dissipation ..................................................... 7
Typical Performance Characteristics ............................................. 8
Layout, Grounding, and Bypassing Considerations .................. 12
Power Supply Bypassing ............................................................ 12
Grounding ................................................................................... 12
Input Capacitance ...................................................................... 12
Input-to-Output Coupling ........................................................ 12
Driving Capacitive Loads .............................................................. 13
Overdrive Recovery ................................................................... 13
Active Filters ............................................................................... 13
Sync Stripper ............................................................................... 14
Single-Supply Composite Video Line Driver ......................... 14
Outline Dimensions ....................................................................... 16
Ordering Guide .......................................................................... 17
REVISION HISTORY
9/07—Rev. B to Rev. C
Changes to Applications Section .................................................... 1
Updated Outline Dimensions ....................................................... 16
Changes to Ordering Guide .......................................................... 17
3/05—Rev. A to Rev. B
Changes to Format .............................................................Universal
Changes to Features.......................................................................... 1
Updated Outline Dimensions ....................................................... 17
Changes to Ordering Guide .......................................................... 18
5/02–Rev. 0 to Rev. A
Edits to Product Description .......................................................... 1
Edit to TPC 6 .................................................................................... 7
Edits to TPCs 21–24....................................................................... 10
Edits to Figure 3 .............................................................................. 11
2/02—Revision 0: Initial Version
Rev. C | Page 2 of 20
AD8091/AD8092
SPECIFICATIONS
T
A
= 25°C, V
S
= 5 V, R
L
= 2 kΩ to 2.5 V, unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth
Bandwidth for 0.1 dB Flatness
Slew Rate
Full Power Response
Settling Time to 0.1%
NOISE/DISTORTION PERFORMANCE
Total Harmonic Distortion (See Figure 11)
Input Voltage Noise
Input Current Noise
Differential Gain Error (NTSC)
Differential Phase Error (NTSC)
Crosstalk
DC PERFORMANCE
Input Offset Voltage
Offset Drift
Input Bias Current
T
MIN
to T
MAX
Input Offset Current
Open-Loop Gain
R
L
= 2 kΩ to 2.5 V
T
MIN
to T
MAX
R
L
= 150 Ω to 2.5 V
T
MIN
to T
MAX
86
76
0.1
98
96
82
78
290
1.4
−0.2 to +4
88
0.015 to 4.985
0.025 to 4.975
0.200 to 4.800
45
45
80
130
50
12
5
+85
Conditions
G = +1, V
O
= 0.2 V p-p
G = −1, +2, V
O
= 0.2 V p-p
G = +2, V
O
= 0.2 V p-p,
R
L
= 150 Ω to 2.5 V, R
F
= 806 Ω
G = −1, V
O
= 2 V step
G = +1, V
O
= 2 V p-p
G = −1, V
O
= 2 V step
f
C
= 5 MHz, V
O
= 2 V p-p, G = +2
f = 10 kHz
f = 10 kHz
G = +2, R
L
= 150 Ω to 2.5 V
R
L
= 1 kΩ to 2.5 V
G = +2, R
L
= 150 Ω to 2.5 V
R
L
= 1 kΩ to 2.5 V
f = 5 MHz, G = +2
Min
70
Typ
110
50
20
145
35
50
−67
16
850
0.09
0.03
0.19
0.03
−60
1.7
T
MIN
to T
MAX
10
1.4
10
25
2.5
3.25
0.75
Max
Unit
MHz
MHz
MHz
V/μs
MHz
ns
dB
nV/√Hz
fA/√Hz
%
%
Degrees
Degrees
dB
mV
mV
μV/°C
μA
μA
μA
dB
dB
dB
dB
kΩ
pF
V
dB
V
V
V
mA
mA
mA
mA
pF
V
mA
dB
°C
100
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
OUTPUT CHARACTERISTICS
Output Voltage Swing
V
CM
= 0 V to 3.5 V
R
L
= 10 kΩ to 2.5 V
R
L
= 2 kΩ to 2.5 V
R
L
= 150 Ω to 2.5 V
V
OUT
= 0.5 V to 4.5 V
T
MIN
to T
MAX
Sourcing
Sinking
G = +1
72
0.100 to 4.900
0.300 to 4.625
Output Current
Short-Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current/Amplifier
Power Supply Rejection Ratio
OPERATING TEMPERATURE RANGE
3
ΔV
S
= ±1 V
70
−40
4.4
80
Rev. C | Page 3 of 20
AD8091/AD8092
T
A
= 25°C, V
S
= +3 V, R
L
= 2 kΩ to +1.5 V, unless otherwise noted.
Table 2.
Parameter
DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth
Bandwidth for 0.1 dB Flatness
Slew Rate
Full Power Response
Settling Time to 0.1%
NOISE/DISTORTION PERFORMANCE
Total Harmonic Distortion (see Figure 11)
Input Voltage Noise
Input Current Noise
Differential Gain Error (NTSC)
Conditions
G = +1, V
O
= 0.2 V p-p
G = −1, +2, V
O
= 0.2 V p-p
G = +2, V
O
= 0.2 V p-p,
R
L
= 150 Ω to 2.5 V, R
F
= 402 Ω
G = −1, V
O
= 2 V step
G = +1, V
O
= 1 V p-p
G = −1, V
O
= 2 V step
f
C
= 5 MHz, V
O
= 2 V p-p, G = −1,
R
L
= 100 Ω to 1.5 V
f = 10 kHz
f = 10 kHz
G = +2, V
CM
= 1 V
R
L
= 150 Ω to 1.5 V
R
L
= 1 kΩ to 1.5 V
G = +2, V
CM
= 1 V
R
L
= 150 Ω to 1.5 V
R
L
= 1 kΩ to 1.5 V
f = 5 MHz, G = +2
Min
70
Typ
110
50
17
135
65
55
−47
16
600
0.11
0.09
0.24
0.10
−60
1.6
T
MIN
to T
MAX
Offset Drift
Input Bias Current
T
MIN
to T
MAX
Input Offset Current
Open-Loop Gain
R
L
= 2 kΩ
T
MIN
to T
MAX
R
L
= 150 Ω
T
MIN
to T
MAX
80
74
0.15
96
94
82
76
290
1.4
−0.2 to +2.0
88
0.01 to 2.99
0.02 to 2.98
0.125 to 2.875
45
45
60
90
45
12
4.8
+85
10
1.3
10
25
2.6
3.25
0.8
Max
Unit
MHz
MHz
MHz
V/μs
MHz
ns
dB
nV/√Hz
fA/√Hz
%
%
Degrees
Degrees
dB
mV
mV
μV/°C
μA
μA
μA
dB
dB
dB
dB
kΩ
pF
V
dB
V
V
V
mA
mA
mA
mA
pF
V
mA
dB
°C
90
Differential Phase Error (NTSC)
Crosstalk
DC PERFORMANCE
Input Offset Voltage
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
OUTPUT CHARACTERISTICS
Output Voltage Swing
V
CM
= 0 V to 1.5 V
R
L
= 10 kΩ to 1.5 V
R
L
= 2 kΩ to 1.5 V
R
L
= 150 Ω to 1.5 V
V
OUT
= 0.5 V to 2.5 V
T
MIN
to T
MAX
Sourcing
Sinking
G = +1
72
0.075 to 2.9
0.20 to 2.75
Output Current
Short Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current/Amplifier
Power Supply Rejection Ratio
OPERATING TEMPERATURE RANGE
3
ΔV
S
= +0.5 V
68
−40
4.2
80
Rev. C | Page 4 of 20