D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
Excellent Video Performance
Differential Gain and Phase Error of 0.01% and 0.05
High Speed
130 MHz 3 dB Bandwidth (G = +2)
450 V/ s Slew Rate
80 ns Settling Time to 0.01%
Low Power
15 mA Max Power Supply Current
High Output Drive Capability
50 mA Minimum Output Current per Amplifier
Ideal for Driving Back Terminated Cables
Flexible Power Supply
Specified for +5 V, 5 V, and 15 V Operation
3.2 V Min Output Swing into a 150 Load
(V
S
= 5 V)
Excellent DC Performance
2.0 mV Input Offset Voltage
Available in 8-Lead SOIC and 8-Lead Plastic Mini-DIP
GENERAL DESCRIPTION
OUT1
–IN1
+IN1
V–
1
2
3
4
Dual, Low Power
Video Op Amp
AD828
FUNCTIONAL BLOCK DIAGRAM
8
7
6
5
V+
OUT2
–IN2
+IN2
AD828
The AD828 is a low cost, dual video op amp optimized for use
in video applications that require gains of +2 or greater and
high output drive capability, such as cable driving. Due to its
low power and single-supply functionality, along with excellent
differential gain and phase errors, the AD828 is ideal for power-
sensitive applications such as video cameras and professional
video equipment.
With video specs like 0.1 dB flatness to 40 MHz and low
differential gain and phase errors of 0.01% and 0.05°, along
with 50 mA of output current per amplifier, the AD828 is an
excellent choice for any video application. The 130 MHz gain
bandwidth and 450 V/µs slew rate make the AD828 useful in
many high speed applications, including video monitors, CATV,
color copiers, image scanners, and fax machines.
+V
0.1 F
The AD828 is fully specified for operation with a single 5 V
power supply and with dual supplies from
±
5 V to
±
15 V. This
power supply flexibility, coupled with a very low supply current
of 15 mA and excellent ac characteristics under all power supply
conditions, make the AD828 the ideal choice for many demand-
ing yet power-sensitive applications.
The AD828 is a voltage feedback op amp that excels as a gain
stage (gains > +2) or active filter in high speed and video systems
and achieves a settling time of 45 ns to 0.1%, with a low input
offset voltage of 2 mV max.
The AD828 is available in low cost, small 8-lead plastic mini-DIP
and SOIC packages.
DIFFERENTIAL GAIN – Percent
0.03
0.02
DIFF GAIN
DIFFERENTIAL PHASE – Degrees
V
IN
R
T
75
1/2
AD828
0.1 F
R
BT
75
75
R
T
75
0.07
0.01
0.06
DIFF PHASE
0.05
–V
1k
1k
Figure 1. Video Line Driver
0.04
5
10
SUPPLY VOLTAGE –
15
V
Figure 2. Differential Phase vs. Supply Voltage
REV. C
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002
AD828–SPECIFICATIONS
Parameter
DYNAMIC PERFORMANCE
–3 dB Bandwidth
(@ T
A
= 25 C, unless otherwise noted.)
V
S
±
5 V
±
15 V
0, +5 V
±
5 V
±
15 V
0, +5 V
±
5 V
±
15 V
0, +5 V
±
5 V
±
15 V
0, +5 V
±
5 V
±
15 V
±
5 V
±
15 V
0, +5 V
±
5 V
±
15 V
±
5 V
±
15 V
±
15 V
±
5 V,
±
15 V
±
5 V,
±
15 V
±
15 V
±
5 V
0, +5 V
±
15 V
±
5 V
0, +5 V
±
5 V,
±
15 V
300
400
200
Min
60
100
30
35
60
20
30
30
10
15
30
10
Typ
85
130
45
55
90
35
43
40
18
25
50
19
22.3
7.2
350
450
250
45
45
80
80
–78
10
1.5
0.01
0.02
0.08
0.05
0.07
0.1
0.5
10
3.3
25
0.3
3
2
2
5.5
2.5
3
5
4
9
5
300
1.5
+4.3
–3.4
+14.3
–13.4
+4.3
+0.9
100
120
100
Max
Unit
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
V/µs
V/µs
V/µs
ns
ns
ns
ns
dB
nV/√Hz
pA/√Hz
%
%
%
Degrees
Degrees
Degrees
mV
mV
µV/°C
µA
µA
µA
nA
nA
nA/°C
V/mV
V/mV
V/mV
V/mV
V/mV
V/mV
kΩ
pF
V
V
V
V
V
V
dB
dB
dB
Conditions
Gain = +2
Gain = –1
Bandwidth for 0.1 dB Flatness
Gain = +2
C
C
= 1 pF
Gain = –1
C
C
= 1 pF
Full Power Bandwidth
*
Slew Rate
Settling Time to 0.1%
Settling Time
to 0.01%
NOISE/HARMONIC PERFORMANCE
Total Harmonic Distortion
Input Voltage Noise
Input Current Noise
Differential Gain Error
(R
L
= 150
Ω)
Differential Phase Error
(R
L
= 150
Ω)
DC PERFORMANCE
Input Offset Voltage
V
OUT
= 5 V p-p
R
LOAD
= 500
Ω
V
OUT
= 20 V p-p
R
LOAD
= 1 kΩ
R
LOAD
= 1 kΩ
Gain = –1
–2.5 V to +2.5 V
0 V–10 V Step, A
V
= –1
–2.5 V to +2.5 V
0 V–10 V Step, A
V
= –1
F
C
= 1 MHz
f = 10 kHz
f = 10 kHz
NTSC
Gain = +2
NTSC
Gain = +2
0.02
0.03
0.09
0.1
T
MIN
to T
MAX
Offset Drift
Input Bias Current
T
MIN
T
MAX
Input Offset Current
T
MIN
to T
MAX
Offset Current Drift
Open-Loop Gain
V
OUT
=
±
2.5 V
R
LOAD
= 500
Ω
T
MIN
to T
MAX
R
LOAD
= 150
Ω
V
OUT
=
±
10 V
R
LOAD
= 1 kΩ
T
MIN
to T
MAX
V
OUT
=
±
7.5 V
R
LOAD
= 150
Ω
(50 mA Output)
±
5 V
±
5 V,
±
15 V
±
5 V,
±
15 V
2
3
6.6
10
4.4
300
500
±
15 V
±
15 V
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
±
5 V
±
15 V
0, +5 V
Common-Mode Rejection Ratio
V
CM
= +2.5 V, T
MIN
to T
MAX
V
CM
=
±
12 V
T
MIN
to T
MAX
±
5 V
±
15 V
±
15 V
+3.8
–2.7
+13
–12
+3.8
+1.2
82
86
84
–2–
REV. C
AD828
Parameter
OUTPUT CHARACTERISTICS
Output Voltage Swing
Conditions
R
LOAD
= 500
Ω
R
LOAD
= 150
Ω
R
LOAD
= 1 kΩ
R
LOAD
= 500
Ω
R
LOAD
= 500
Ω
Output Current
Short Circuit Current
Output Resistance
MATCHING CHARACTERISTICS
Dynamic
Crosstalk
Gain Flatness Match
Skew Rate Match
DC
Input Offset Voltage Match
Input Bias Current Match
Open-Loop Gain Match
Common-Mode Rejection Ratio Match
Power Supply Rejection Ratio Match
POWER SUPPLY
Operating Range
Quiescent Current
T
MIN
to T
MAX
T
MIN
to T
MAX
V
S
=
±
5 V to
±
15 V, T
MIN
to T
MAX
V
S
±
5 V
±
5 V
±
15 V
±
15 V
0, +5 V
±
15 V
±
5 V
0, +5 V
±
15 V
Min
3.3
3.2
13.3
12.8
1.5
3.5
50
40
30
Typ
3.8
3.6
13.7
13.4
Max
Unit
±
V
±
V
±
V
±
V
±
V
mA
mA
mA
mA
Ω
Open-Loop
90
8
f = 5 MHz
G = +1, f = 40 MHz
G = –1
T
MIN
to T
MAX
T
MIN
to T
MAX
V
O
=
±10
V, R
L
= 1 kΩ, T
MIN
to T
MAX
V
CM
=
±
12 V, T
MIN
to T
MAX
±
5 V to
±
15 V, T
MIN
to T
MAX
Dual Supply
Single Supply
±
15 V
±
15 V
±
15 V
±
5 V,
±
15 V
±
5 V,
±
15 V
±
15 V
±
15 V
–80
0.2
10
0.5
0.06
0.01
100
100
2
0.8
0.15
dB
dB
V/µs
mV
µA
mV/V
dB
dB
V
V
mA
mA
mA
dB
80
80
±
2.5
+5
±
5 V
±
5 V
±
5 V
14.0
14.0
80
90
±
18
+36
15
15
15
Power Supply Rejection Ratio
*Full
power bandwidth = slew rate/2
π
V
PEAK
.
Specifications subject to change without notice.
ORDERING GUIDE
Model
Temperature
Range
Package
Description
8-Lead Plastic DIP
8-Lead Plastic SOIC
7" Tape and Reel
13" Tape and Reel
T
J
= 150 C
MAXIMUM POWER DISSIPATION – Watts
Package
Option
N-8
SO-8
SO-8
SO-8
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
±
18 V
Internal Power Dissipation
2
Plastic DIP (N) . . . . . . . . . . . . . . . . . . See Derating Curves
Small Outline (R) . . . . . . . . . . . . . . . . . See Derating Curves
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . .
±
V
S
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . .
±
6 V
Output Short Circuit Duration . . . . . . . . See Derating Curves
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Specification is for device in free air:
8-Lead Plastic DIP Package:
θ
JA
= 100°C/W
8-Lead SOIC Package:
θ
JA
= 155°C/W
AD828AN
–40°C to +85°C
AD828AR
–40°C to +85°C
AD828AR-REEL7 –40°C to +85°C
AD828AR-REEL –40°C to +85°C
2.0
8-LEAD MINI-DIP PACKAGE
1.5
1.0
0.5
8-LEAD SOIC PACKAGE
0
–50 –40 –30 –20 –10 0 10 20 30 40 50 60 70
AMBIENT TEMPERATURE – C
80
90
Figure 3. Maximum Power Dissipation vs.
Temperature for Different Package Types
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD828 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
REV. C
–3–
AD828—Typical Performance Characteristics
QUIESCENT SUPPLY CURRENT PER AMP – mA
20
7.7
INPUT COMMON-MODE RANGE –
V
15
+VCM
10
–V CM
7.2
+85 C
6.7
–40 C
+25 C
5
6.2
0
0
5
10
SUPPLY VOLTAGE –
15
V
20
5.7
0
5
10
SUPPLY VOLTAGE –
15
V
20
TPC 1. Common-Mode Voltage Range vs. Supply
Voltage
TPC 4. Quiescent Supply Current per Amp vs. Supply
Voltage for Various Temperatures
20
500
V
OUTPUT VOLTAGE SWING –
15
SLEW RATE – V/ s
450
R
L
= 500
10
R
L
= 150
5
400
350
0
300
0
5
10
SUPPLY VOLTAGE –
15
V
20
0
5
10
SUPPLY VOLTAGE –
15
V
20
TPC 2. Output Voltage Swing vs. Supply Voltage
TPC 5. Slew Rate vs. Supply Voltage
30
100
CLOSED-LOOP OUTPUT IMPEDANCE –
OUTPUT VOLTAGE SWING – V p-p
25
Vs =
20
15V
10
15
1
10
Vs =
5
5V
0.1
0
10
100
1k
LOAD RESISTANCE –
10k
0.01
1k
10k
100k
1M
FREQUENCY – Hz
10M
100M
TPC 3. Output Voltage Swing vs. Load Resistance
TPC 6. Closed-Loop Output Impedance vs. Frequency
–4–
REV. C