D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Zero-Drift, Single-Supply, Rail-to-Rail
Input/Output Operational Amplifiers
AD8551/AD8552/AD8554
FEATURES
Low offset voltage: 1 μV
Input offset drift: 0.005 μV/°C
Rail-to-rail input and output swing
5 V/2.7 V single-supply operation
High gain, CMRR, PSRR: 130 dB
Ultralow input bias current: 20 pA
Low supply current: 700 μA/op amp
Overload recovery time: 50 μs
No external capacitors required
PIN CONFIGURATIONS
NC
–IN A
+IN A
V–
1
4
8
5
AD8551
NC = NO CONNECT
Figure 1. 8-Lead MSOP (RM Suffix)
NC 1
–IN A 2
+IN A 3
V– 4
8 NC
AD8551
7 V+
6 OUT A
01101-002
5 NC
APPLICATIONS
Temperature sensors
Pressure sensors
Precision current sensing
Strain gage amplifiers
Medical instrumentation
Thermocouple amplifiers
NC = NO CONNECT
Figure 2. 8-Lead SOIC (R Suffix)
OUT A
–IN A
+IN A
V–
1
4
8
5
Figure 3. 8-Lead TSSOP (RU Suffix)
OUT A 1
–IN A 2
+IN A 3
V– 4
8 V+
GENERAL DESCRIPTION
This family of amplifiers has ultralow offset, drift, and bias
current. The AD8551, AD8552, and AD8554 are single, dual,
and quad amplifiers featuring rail-to-rail input and output swings.
All are guaranteed to operate from 2.7 V to 5 V with a single supply.
The AD855x family provides the benefits previously found only
in expensive auto-zeroing or chopper-stabilized amplifiers.
Using Analog Devices, Inc. topology, these new zero-drift
amplifiers combine low cost with high accuracy. No external
capacitors are required.
With an offset voltage of only 1 μV and drift of 0.005 μV/°C, the
AD855x are perfectly suited for applications in which error
sources cannot be tolerated. Temperature, position and pressure
sensors, medical equipment, and strain gage amplifiers benefit
greatly from nearly zero drift over their operating temperature
range. The rail-to-rail input and output swings provided by the
AD855x family make both high-side and low-side sensing easy.
The AD855x family is specified for the extended industrial/auto
motive temperature range (−40°C to +125°C). The AD8551
single amplifier is available in 8-lead MSOP and 8-lead narrow
SOIC packages. The AD8552 dual amplifier is available in 8-lead
narrow SOIC and 8-lead TSSOP surface-mount packages. The
AD8554 quad is available in 14-lead narrow SOIC and 14-lead
TSSOP packages.
AD8552
7 OUT B
5 +IN B
01101-004
6 –IN B
Figure 4. 8-Lead SOIC (R Suffix)
OUT A
–IN A
+IN A
V+
+IN B
–IN B
OUT B
1
14
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
AD8554
7
8
Figure 5. 14-Lead TSSOP (RU Suffix)
OUT A 1
–IN A 2
+IN A 3
V+ 4
+IN B 5
–IN B 6
OUT B 7
14 OUT D
13 –IN D
12 +IN D
AD8554
11 V–
10 +IN C
01101-006
9 –IN C
8 OUT C
Figure 6. 14-Lead SOIC (R Suffix)
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©1999–2008 Analog Devices, Inc. All rights reserved.
01101-005
01101-003
AD8552
V+
OUT B
–IN B
+IN B
01101-001
NC
V+
OUT A
NC
AD8551/AD8552/AD8554
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Pin Configurations ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings............................................................ 5
Thermal Characteristics .............................................................. 5
ESD Caution .................................................................................. 5
Typical Performance Characteristics ............................................. 6
Functional Description .................................................................. 14
Amplifier Architecture .............................................................. 14
Basic Auto-Zero Amplifier Theory .......................................... 14
High Gain, CMRR, PSRR .......................................................... 16
Maximizing Performance Through Proper Layout ............... 16
1/f Noise Characteristics ........................................................... 17
Intermodulation Distortion ...................................................... 17
Broadband and External Resistor Noise Considerations ...... 18
Output Overdrive Recovery...................................................... 18
Input Overvoltage Protection ................................................... 18
Output Phase Reversal ............................................................... 19
Capacitive Load Drive ............................................................... 19
Power-Up Behavior .................................................................... 19
Applications..................................................................................... 20
A 5 V Precision Strain Gage Circuit ........................................ 20
3 V Instrumentation Amplifier ................................................ 20
A High Accuracy Thermocouple Amplifier ........................... 21
Precision Current Meter ............................................................ 21
Precision Voltage Comparator.................................................. 21
Outline Dimensions ....................................................................... 22
Ordering Guide .......................................................................... 23
REVISION HISTORY
9/08—Rev. C to Rev. D
Changes to Ordering Guide .......................................................... 23
3/07—Rev. B to Rev. C
Changes to Specifications Section .................................................. 3
2/07—Rev. A to Rev. B
Updated Format .................................................................. Universal
Changes to Figure 54 ...................................................................... 16
Deleted Spice Model Section......................................................... 19
Deleted Figure 63, Renumbered Sequentially ............................ 19
Changes to Ordering Guide .......................................................... 24
11/02—Rev. 0 to Rev. A
Edits to Figure 60 ............................................................................ 16
Updated Outline Dimensions ....................................................... 20
Rev. D | Page 2 of 24
AD8551/AD8552/AD8554
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
V
S
= 5 V, V
CM
= 2.5 V, V
O
= 2.5 V, T
A
= 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Input Bias Current
AD8551/AD8554
AD8552
AD8552
Input Offset Current
AD8551/AD8554
AD8552
AD8552
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
1
Offset Voltage Drift
OUTPUT CHARACTERISTICS
Output Voltage High
Symbol
V
OS
−40°C ≤ T
A
≤ +125°C
I
B
−40°C ≤ T
A
≤ +125°C
−40°C ≤ T
A
≤ +85°C
−40°C ≤ T
A
≤ +125°C
I
OS
−40°C ≤ T
A
≤ +125°C
−40°C ≤ T
A
≤ +85°C
−40°C ≤ T
A
≤ +125°C
CMRR
A
VO
ΔV
OS
/ΔT
V
OH
V
CM
= 0 V to +5 V
−40°C ≤ T
A
≤ +125°C
R
L
= 10 kΩ, V
O
= 0.3 V to 4.7 V
−40°C ≤ T
A
≤ +125°C
−40°C ≤ T
A
≤ +125°C
R
L
= 100 kΩ to GND
R
L
= 100 kΩ to GND @ −40°C to +125°C
R
L
= 10 kΩ to GND
R
L
= 10 kΩ to GND @ −40°C to +125°C
R
L
= 100 kΩ to V+
R
L
= 100 kΩ to V+ @ −40°C to +125°C
R
L
= 10 kΩ to V+
R
L
= 10 kΩ to V+ @ −40°C to +125°C
−40°C to +125°C
Output Current
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Overload Recovery Time
Gain Bandwidth Product
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
1
Conditions
Min
Typ
1
10
1.0
160
2.5
20
150
30
150
Max
5
10
50
1.5
300
4
70
200
150
400
5
Unit
μV
μV
pA
nA
pA
nA
pA
pA
pA
pA
V
dB
dB
dB
dB
μV/°C
V
V
V
V
mV
mV
mV
mV
mA
mA
mA
mA
dB
dB
μA
μA
V/μs
ms
MHz
μV p-p
μV p-p
nV/√Hz
fA/√Hz
0
120
115
125
120
140
130
145
135
0.005
4.998
4.997
4.98
4.975
1
2
10
15
±50
±40
±30
±15
130
130
850
1000
0.4
0.05
1.5
1.0
0.32
42
2
0.04
4.99
4.99
4.95
4.95
Output Voltage Low
V
OL
10
10
30
30
Output Short-Circuit Limit Current
I
SC
I
O
−40°C to +125°C
PSRR
I
SY
V
S
= 2.7 V to 5.5 V
−40°C ≤ T
A
≤ +125°C
V
O
= 0 V
−40°C ≤ T
A
≤ +125°C
R
L
= 10 kΩ
±25
120
115
975
1075
SR
GBP
e
n
p-p
e
n
p-p
e
n
i
n
0.3
0 Hz to 10 Hz
0 Hz to 1 Hz
f = 1 kHz
f = 10 Hz
Gain testing is dependent upon test bandwidth.
Rev. D | Page 3 of 24
AD8551/AD8552/AD8554
V
S
= 2.7 V, V
CM
= 1.35 V, V
O
= 1.35 V, T
A
= 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Input Bias Current
AD8551/AD8554
AD8552
AD8552
Input Offset Current
AD8551/AD8554
AD8552
AD8552
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
1
Offset Voltage Drift
OUTPUT CHARACTERISTICS
Output Voltage High
Symbol
V
OS
−40°C ≤ T
A
≤ +125°C
I
B
−40°C ≤ T
A
≤ +125°C
−40°C ≤ T
A
≤ +85°C
−40°C ≤ T
A
≤ +125°C
I
OS
−40°C ≤ T
A
≤ +125°C
−40°C ≤ T
A
≤ +85°C
−40°C ≤ T
A
≤ +125°C
CMRR
A
VO
ΔV
OS
/ΔT
V
OH
V
CM
= 0 V to 2.7 V
−40°C ≤ T
A
≤ +125°C
R
L
= 10 kΩ, V
O
= 0.3 V to 2.4 V
−40°C ≤ T
A
≤ +125°C
−40°C ≤ T
A
≤ +125°C
R
L
= 100 kΩ to GND
R
L
= 100 kΩ to GND @ −40°C to +125°C
R
L
= 10 kΩ to GND
R
L
= 10 kΩ to GND @ −40°C to +125°C
R
L
= 100 kΩ to V+
R
L
= 100 kΩ to V+ @ −40°C to +125°C
R
L
= 10 kΩ to V+
R
L
= 10 kΩ to V+ @ −40°C to +125°C
−40°C to +125°C
Output Current
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Overload Recovery Time
Gain Bandwidth Product
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
1
Conditions
Min
Typ
1
10
1.0
160
2.5
10
150
30
150
Max
5
10
50
1.5
300
4
50
200
150
400
2.7
Unit
μV
μV
pA
nA
pA
nA
pA
pA
pA
pA
V
dB
dB
dB
dB
μV/°C
V
V
V
V
mV
mV
mV
mV
mA
mA
mA
mA
dB
dB
μA
μA
V/μs
ms
MHz
μV p-p
nV/√Hz
fA/√Hz
0
115
110
110
105
130
130
140
130
0.005
2.697
2.696
2.68
2.675
1
2
10
15
±15
±10
±10
±5
130
130
750
950
0.5
0.05
1
1.6
75
2
0.04
2.685
2.685
2.67
2.67
Output Voltage Low
V
OL
10
10
20
20
Short-Circuit Limit
I
SC
I
O
−40°C to +125°C
PSRR
I
SY
V
S
= 2.7 V to 5.5 V
−40°C ≤ T
A
≤ +125°C
V
O
= 0 V
−40°C ≤ T
A
≤ +125°C
R
L
= 10 kΩ
±10
120
115
900
1000
SR
GBP
e
n
p-p
e
n
i
n
0 Hz to 10 Hz
f = 1 kHz
f = 10 Hz
Gain testing is dependent upon test bandwidth.
Rev. D | Page 4 of 24