D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Low Voltage 1.65 V to 3.6 V, Bidirectional
Logic Level Translation, Bypass Switch
ADG3233
FEATURES
Operates from 1.65 V to 3.6 V supply rails
Bidirectional level translation, unidirectional signal path
8-lead SOT-23 and MSOP packages
Bypass or normal operation
Short circuit protection
FUNCTIONAL BLOCK DIAGRAM
V
CC1
V
CC1
V
CC2
A1
Y1
V
CC1
APPLICATIONS
JTAG chain bypassing
Daisy-chain bypassing
Digital switching
A2
V
CC1
V
CC2
0
V
CC2
Y2
1
EN
ADG3233
GND
03297-001
Figure 1.
GENERAL DESCRIPTION
The ADG3233
1
is a bypass switch designed on a submicron
process that operates from supplies as low as 1.65 V. The device
is guaranteed for operation over the supply range 1.65 V to 3.6 V. It
operates from two supply voltages, allowing bidirectional level
translation, that is, it translates low voltages to higher voltages
and vice versa. The signal path is unidirectional, meaning data
may only flow from A
→
Y.
This type of device may be used in applications that require a
bypassing function. It is ideally suited to bypassing devices in
a JTAG chain or in a daisy-chain loop. One switch could be
used for each device or a number of devices, thus allowing
easy bypassing of one or more devices in a chain. This may
be particularly useful in reducing the time overhead in testing
devices in the JTAG chain or in daisy-chain applications where
the user does not wish to change the settings of a particular device.
The bypass switch is packaged in two of the smallest footprints
available for its required pin count. The 8-lead SOT-23 package
requires only 2.9 mm × 2.8 mm board space, while the MSOP
package occupies approximately 3 mm × 4.9 mm board area.
PRODUCT HIGHLIGHTS
1.
2.
3.
4.
Bidirectional level translation matches any voltage level
from 1.65 V to 3.6 V.
The bypass switch offers high performance and is fully
guaranteed across the supply range.
Short circuit protection.
Tiny 8-lead SOT-23 package and 8-lead MSOP.
Table 1. Truth Table
EN
L
H
Signal Path
A1
→
Y2, Y1
→
V
CC1
A1
→
Y2, A2
→
Y2
Function
Enable bypass mode
Enable normal mode
1
U.S. Patent Number: 7,369,385 B2.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2003–2011 Analog Devices, Inc. All rights reserved.
ADG3233
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Product Highlights ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Test Waveforms ............................................................................. 5
Absolute Maximum Ratings............................................................ 6
ESD Caution...................................................................................6
Pin Configuration and Function Descriptions..............................7
Typical Performance Characteristics ..............................................8
Theory of Operation ...................................................................... 13
A1 and EN Input ........................................................................ 13
Normal Operation ...................................................................... 13
Bypass Operation ....................................................................... 14
Outline Dimensions ....................................................................... 15
Ordering Guide .......................................................................... 16
REVISION HISTORY
7/11—Rev.
0 to Rev. A
Changes to Patent Number, General Description Section, and
Product Highlights Section ............................................................. 1
Changes to V
CC
= V
CC1
= V
CC2
= 2.5 V ± 0.2 V, ENABLE Time
EN
→
Y1, Table 2 .............................................................................
4
Changes to Table 3 ............................................................................ 6
Updated Outline Dimensions ....................................................... 15
Changes to Ordering Guide .......................................................... 16
5/03—Revision 0: Initial Version
Rev. A | Page 2 of 16
ADG3233
SPECIFICATIONS
V
CC1
= V
CC2
= 1.65 V to 3.6 V, GND = 0 V, all specifications T
MIN
to T
MAX
, unless otherwise noted.
Table 2.
Parameter
1
LOGIC INPUTS/OUTPUTS
3
Input High Voltage
4
Symbol
V
IH
Test Conditions/Comments
V
CC2
= 1.65 V to 3.6 V, GND = 0 V
V
CC1
= 3.0 V to 3.6 V
V
CC1
= 2.3 V to 2.7 V
V
CC1
= 1.65 V to 1.95 V
V
CC1
= 3.0 V to 3.6 V
V
CC1
= 2.3 V to 2.7 V
V
CC1
= 1.65 V to 1.95 V
I
OH
= −100 μA, V
CC1
= 3.0 V to 3.6 V
I
OH
= −100 μA, V
CC1
= 2.3 V to 2.7 V
I
OH
= −100 μA, V
CC1
= 1.65 V to 1.95 V
I
OH
= −4 mA, V
CC1
= 2.3 V to 2.7 V
I
OH
= −4 mA, V
CC1
= 1.65 V to 1.95 V
I
OH
= −8 mA, V
CC1
= 3.0 V to 3.6 V
I
OL
= 100 μA, V
CC1
= 3.0 V to 3.6 V
I
OL
= 100 μA, V
CC1
= 2.3 V to 2.7 V
I
OL
= 100 μA, V
CC1
= 1.65 V to 1.95 V
I
OL
= 4 mA, V
CC1
= 2.3 V to 2.7 V
I
OL
= 4 mA, V
CC1
= 1.65 V to 1.95 V
I
OL
= 8 mA, V
CC1
= 3.0 V to 3.6 V
V
CC1
= 1.65 V to 3.6 V, GND = 0 V
I
OH
= −100 μA, V
CC2
= 3.0 V to 3.6 V
I
OH
= −100 μA, V
CC2
= 2.3 V to 2.7 V
I
OH
= −100 μA, V
CC2
= 1.65 V to 1.95 V
I
OH
= −4 mA, V
CC2
= 2.3 V to 2.7 V
I
OH
= −4 mA,V
CC2
= 1.65 V to 1.95 V
I
OH
= −8 mA, V
CC2
= 3.0 V to 3.6 V
I
OL
= 100 μA, V
CC2
= 3.0 V to 3.6 V
I
OL
= 100 μA, V
CC2
= 2.3 V to 2.7 V
I
OL
= 100 μA, V
CC2
= 1.65 V to 1.95 V
I
OL
= 4 mA, V
CC2
= 2.3 V to 2.7 V
I
OL
= 4 mA, V
CC2
= 1.65 V to 1.95 V
I
OL
= 8 mA, V
CC2
= 3.0 V to 3.6 V
Min
1.35
1.35
0.65 × V
CC
0.8
0.7
0.35 × V
CC
2.4
2.0
V
CC
− 0.45
2.0
V
CC
– 0.45
2.4
0.40
0.40
0.45
0.40
0.45
0.40
2.4
2.0
V
CC
− 0.45
2.0
V
CC
– 0.45
2.4
0.40
0.40
0.45
0.40
0.45
0.40
Typ
2
Max
Unit
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Input Low Voltage
4
V
IL
Output High Voltage (Y1)
V
OH
Output Low Voltage (Y1)
V
OL
LOGIC OUTPUTS
3
Output High Voltage (Y2)
V
OH
Output Low Voltage (Y2)
V
OL
SWITCHING CHARACTERISTICS
4, 5
V
CC
= V
CC1
= V
CC2
= 3.3 V ± 0.3 V
Propagation Delay, t
PD
A1
→
Y1 Normal Mode
A2
→Y2
Normal Mode
A1
→
Y2 Bypass Mode
ENABLE Time EN
→
Y1
DISABLE Time EN
→
Y1
ENABLE Time EN
→
Y2
DISABLE Time EN
→
Y2
t
PHL
, t
PLH
t
PHL
, t
PLH
t
PHL
, t
PLH
t
EN
t
DIS
t
EN
t
DIS
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
3.5
3.5
4
4
2.8
4.5
4
5.4
5.4
6.5
6
4
6.5
6.5
ns
ns
ns
ns
ns
ns
ns
Rev. A | Page 3 of 16
ADG3233
Parameter
1
V
CC
= V
CC1
= V
CC2
= 2.5 V ± 0.2 V
Propagation Delay, t
PD
A1
→
Y1 Normal Mode
A2
→
Y2 Normal Mode
A1
→
Y2 Bypass Mode
ENABLE Time EN
→
Y1
DISABLE Time EN
→
Y1
ENABLE Time EN
→
Y2
DISABLE Time EN
→
Y2
V
CC
= V
CC1
= V
CC2
= 1.8 V ± 0.15 V
Propagation Delay, t
PD
A1
→
Y1 Normal Mode
A2
→
Y2 Normal Mode
A1
→
Y2 Bypass Mode
ENABLE Time EN
→
Y1
DISABLE Time EN
→
Y1
ENABLE Time EN
→
Y2
DISABLE Time EN
→
Y2
Input Leakage Current
Output Leakage Current
POWER REQUIREMENTS
Power Supply Voltages
Quiescent Power Supply Current
Increase in I
CC
per Input
1
2
Symbol
Test Conditions/Comments
Min
Typ
2
Max
Unit
t
PHL
, t
PLH
t
PHL
, t
PLH
t
PHL
, t
PLH
t
EN
t
DIS
t
EN
t
DIS
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
4.5
4.5
4.5
5
3.2
5
4.8
6.2
6.2
6.5
7.2
4.7
7.7
7.2
ns
ns
ns
ns
ns
ns
ns
t
PHL
, t
PLH
t
PHL
, t
PLH
t
PHL
, t
PLH
t
EN
t
DIS
t
EN
t
DIS
I
I
I
O
V
CC1
V
CC2
I
CC1
I
CC2
ΔI
CC1
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
C
L
= 30 pF, V
T
= V
CC
/2
0 ≤ V
IN
≤ 3.6 V
0 ≤ V
IN
≤ 3.6 V
1.65
1.65
Digital inputs = 0 V or V
CC
Digital inputs = 0 V or V
CC
V
CC
= 3.6 V, one input at 3.0 V; others at
V
CC
or GND
6.7
6.5
6.5
7
4.4
7
6.5
10
10
10.25
10.5
6.5
12
10.5
±1
±1
3.6
3.6
2
2
0.75
ns
ns
ns
ns
ns
ns
ns
μA
μA
V
V
μA
μA
μA
Temperature range is as follows: B Version: −40°C to +85°C.
All typical values are at V
CC
= V
CC1
= V
CC2
, T
A
= 25°C, unless otherwise stated.
3
V
IL
and V
IH
levels are specified with respect to V
CC1
, V
OH
, and V
OL
levels for Y1 are specified with respect to V
CC1
, and V
OH
, and V
OL
levels are specified for Y2 with respect to
V
CC2
.
4
Guaranteed by design, not subject to production test.
5
See the Test Waveforms section.
Rev. A | Page 4 of 16