Am29LV200B
Data Sheet
The Am29LV200B is not offered for new designs. Please contact a Spansion representative for alter-
nates.
The following document contains information on Spansion memory products. Although the document
is marked with the name of the company that originally developed the specification, Spansion will
continue to offer these products to existing customers.
Continuity of Specifications
There is no change to this data sheet as a result of offering the device as a Spansion product. Any
changes that have been made are the result of normal data sheet improvement and are noted in the
document revision summary, where supported. Future routine revisions will occur when appro and
changes will be noted in a revision summary.
Continuity of Ordering Part Numbers
Spansion continues to support existing part numbers beginning with “Am” and “MBM”. To order these
products, please use only the Ordering Part Numbers listed in this document.
For More Information
Please contact your local sales office for additional information about Spansion memory solutions.
Publication Number
21521
Revision
D
Amendment
6
Issue Date
October 10, 2006
THIS PAGE LEFT INTENTIONALLY BLANK.
DATA SHEET
Am29LV200B
2 Megabit (256 K x 8-Bit/128 K x 16-Bit)
CMOS 3.0 Volt-only Boot Sector Flash Memory
The Am29LV200B is not offered for new designs. Please contact a Spansion representative for alternates.
DISTINCTIVE CHARACTERISTICS
■
Single power supply operation
— 2.7 to 3.6 volt read and write operations for
battery-powered applications
■
Manufactured on 0.32 µm process technology
— Compatible with 0.5 µm Am29LV200 device
■
High performance
— Full voltage range: access times as fast as 70 ns
— Regulated voltage range: access times as fast as
55 ns
■
Ultra low power consumption (typical values at
5 MHz)
— 200 nA Automatic Sleep mode current
— 200 nA standby mode current
— 7 mA read current
— 15 mA program/erase current
■
Flexible sector architecture
— One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and
three 64 Kbyte sectors (byte mode)
— One 8 Kword, two 4 Kword, one 16 Kword, and
three 32 Kword sectors (word mode)
— Supports full chip erase
— Sector Protection features:
A hardware method of locking a sector to prevent
any program or erase operations within that sector
Sectors can be locked in-system or via
programming equipment
Temporary Sector Unprotect feature allows code
changes in previously locked sectors
■
Unlock Bypass Program Command
— Reduces overall programming time when issuing
multiple program command sequences
■
Top or bottom boot block configurations
available
■
Embedded Algorithms
— Embedded Erase algorithm automatically
preprograms and erases the entire chip or any
combination of designated sectors
— Embedded Program algorithm automatically
writes and verifies data at specified addresses
■
Minimum 1 million erase cycle guarantee per
sector
■
20-year data retention at 125°C
— Reliable operation for the life of the system
■
Package option
— 48-pin TSOP
— 44-pin SO
— 48-ball FBGA
■
Compatibility with JEDEC standards
— Pinout and software compatible with single-
power supply Flash
— Superior inadvertent write protection
■
Data# Polling and toggle bits
— Provides a software method of detecting program
or erase operation completion
■
Ready/Busy# pin (RY/BY#)
— Provides a hardware method of detecting
program or erase cycle completion
■
Erase Suspend/Erase Resume
— Suspends an erase operation to read data from,
or program data to, a sector that is not being
erased, then resumes the erase operation
■
Hardware reset pin (RESET#)
— Hardware method to reset the device to reading
array data
This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.
Publication#
21521
Rev:
D
Amendment:
6
Issue Date:
October 10, 2006
DATA SHEET
GENERAL DESCRIPTION
The Am29LV200B is a 2 Mbit, 3.0 volt-only Flash
memory organized as 262,144 bytes or 131,072 words.
The device is offered in 44-pin SO, 48-pin TSOP, and 48-
ball FBGA packages. The word-wide data (x16) appears
on DQ15-DQ0; the byte-wide (x8) data appears on
DQ7-DQ0. This device is designed to be programmed
in-system using only a single 3.0 volt V
CC
supply. No
V
PP
is required for write or erase operations. The device
can also be programmed in standard EPROM
programmers.
This device is manufactured using AMD’s 0.32 µm
process technology, and offers all the features and ben-
efits of the Am29LV200, which was manufactured using
0 . 5 µ m p r o c e s s t e c h n o l o gy. I n a d d i t i o n , t h e
Am29LV200B features unlock bypass programming
and in-system sector protection/unprotection.
The standard device offers access times of 55, 70, 90
and 120 ns, allowing high speed microprocessors to
operate without wait states. To eliminate bus contention
the device has separate chip enable (CE#), write
enable (WE#) and output enable (OE#) controls.
The device requires only a
single 3.0 volt power
supply
for both read and write functions. Internally
generated and regulated voltages are provided for the
program and erase operations.
The device is entirely command set compatible with the
JEDEC single-power-supply Flash standard.
Com-
mands are written to the command register using
standard microprocessor write timings. Register con-
tents serve as input to an internal state-machine that
controls the erase and programming circuitry. Write
cycles also internally latch addresses and data needed
for the programming and erase operations. Reading
data out of the device is similar to reading from other
Flash or EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the
Embedded
Program
algorithm—an internal algorithm that auto-
matically times the program pulse widths and verifies
proper cell margin. The
Unlock Bypass
mode facili-
tates faster programming times by requiring only two
write cycles to program data instead of four.
Device erasure occurs by executing the erase
command sequence. This initiates the
Embedded
Erase
algorithm—an internal algorithm that automatically
preprograms the array (if it is not already programmed)
before executing the erase operation. During erase, the
device automatically times the erase pulse widths and
verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by observing the RY/BY#
pin, or by reading the DQ7 (Data# Polling) and DQ6
(toggle)
status bits.
After a program or erase cycle has
been completed, the device is ready to read array data
or accept another command.
The
sector erase architecture
allows memory sectors
to be erased and reprogrammed without affecting the
data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection
measures include a low
V
CC
detector that automatically inhibits write opera-
tions during power transitions. The
hardware sector
protection
feature disables both program and erase
operations in any combination of the sectors of
memory. This can be achieved in-system or via pro-
gramming equipment.
The
Erase Suspend
feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The
hardware RESET# pin
terminates any operation
in progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to the
system reset circuitry. A system reset would thus also
reset the device, enabling the system microprocessor
to read the boot-up firmware from the Flash memory.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the
automatic sleep mode.
The system can also place the device into the
standby
mode.
Power consumption is greatly reduced in both
these modes.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the
highest levels of quality, reliability and cost effective-
ness. The device electrically erases all bits within a
sector simultaneously via Fowler-Nordheim tunneling.
The data is programmed using hot electron injection.
2
Am29LV200B
21521D6 October 10, 2006
DATA SHEET
TABLE OF CONTENTS
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Special Handling Instructions ................................................... 6
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 1. Am29LV200B Device Bus Operations ................................ 9
DQ2: Toggle Bit II ................................................................... 21
Reading Toggle Bits DQ6/DQ2 ............................................... 21
DQ5: Exceeded Timing Limits ................................................ 22
DQ3: Sector Erase Timer ....................................................... 22
Figure 6. Toggle Bit Algorithm ........................................................ 22
Table 6. Write Operation Status..................................................... 23
Word/Byte Configuration .......................................................... 9
Requirements for Reading Array Data ..................................... 9
Writing Commands/Command Sequences .............................. 9
Program and Erase Operation Status .................................... 10
Standby Mode ........................................................................ 10
Automatic Sleep Mode ................................................................10
RESET#: Hardware Reset Pin ...................................................10
Output Disable Mode .............................................................. 11
Table 2. Am29LV200BT Top Boot Block Sector Address Table..... 11
Table 3. Am29LV200BB Bottom Boot Block Sector Address Table 11
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 24
Extended (E) Devices ............................................................. 24
V
CC
Supply Voltages .............................................................. 24
Figure 9. I
CC1
Current vs. Time (Showing Active and Automatic
Sleep Currents) .............................................................................. 26
Figure 10. Typical I
CC1
vs. Frequency ........................................... 26
Figure 11. Test Setup ..................................................................... 27
Table 7. Test Specifications ........................................................... 27
Autoselect Mode ..................................................................... 11
Table 4. Am29LV200B Autoselect Codes (High Voltage Method).. 12
Key to Switching Waveforms. . . . . . . . . . . . . . . . 27
Figure 12. Input Waveforms and Measurement Levels ................. 27
Sector Protection/Unprotection ............................................... 12
Temporary Sector Unprotect .................................................. 12
Figure 1. In-System Sector Protect/Unprotect Algorithms ...............13
Figure 2. Temporary Sector Unprotect Operation ...........................14
Read Operations .................................................................... 28
Figure 13. Read Operations Timings ............................................. 28
Hardware Reset (RESET#) .................................................... 29
Figure 14. RESET# Timings .......................................................... 29
Hardware Data Protection ...................................................... 14
Low V
CC
Write Inhibit .............................................................. 14
Write Pulse “Glitch” Protection ............................................... 14
Logical Inhibit .......................................................................... 14
Power-Up Write Inhibit ............................................................ 14
Reading Array Data ................................................................ 15
Reset Command ..................................................................... 15
Autoselect Command Sequence ............................................ 15
Word/Byte Program Command Sequence ............................. 15
Unlock Bypass Command Sequence ..................................... 16
Figure 3. Program Operation ..........................................................16
Word/Byte Configuration (BYTE#) ........................................ 30
Figure 15. BYTE# Timings for Read Operations ............................ 30
Figure 16. BYTE# Timings for Write Operations ............................ 30
Erase/Program Operations ..................................................... 31
Figure 17. Program Operation Timings .......................................... 32
Figure 18. Chip/Sector Erase Operation Timings .......................... 33
Figure 19. Data# Polling Timings (During Embedded Algorithms) . 34
Figure 20. Toggle Bit Timings (During Embedded Algorithms) ...... 34
Figure 21. DQ2 vs. DQ6 ................................................................. 35
Temporary Sector Unprotect .................................................. 35
Figure 22. Temporary Sector Unprotect Timing Diagram .............. 35
Figure 23. Sector Protect/Unprotect Timing Diagram .................... 36
Chip Erase Command Sequence ........................................... 16
Sector Erase Command Sequence ........................................ 17
Erase Suspend/Erase Resume Commands ........................... 17
Figure 4. Erase Operation ...............................................................18
Alternate CE# Controlled Erase/Program Operations ............ 37
Figure 24. Alternate CE# Controlled Write Operation Timings ...... 38
Command Definitions ............................................................. 19
Table 5. Am29LV200B Command Definitions................................. 19
DQ7: Data# Polling ................................................................. 20
Figure 5. Data# Polling Algorithm ...................................................20
RY/BY#: Ready/Busy# ........................................................... 21
DQ6: Toggle Bit I .................................................................... 21
Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 39
TSOP and SO Pin Capacitance . . . . . . . . . . . . . . 39
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
TS 048—48-Pin Standard TSOP ............................................ 40
SO 044—44-Pin Small Outline Package ................................ 41
FBA048—48-Ball Fine-Pitch Ball Grid Array, 0.80 mm pitch,
6 x 8 mm package .................................................................. 42
October 10, 2006 21521D6
Am29LV200B
3