ASMT-QYBB-Nxxxx
Super 0.5W Warm White Power PLCC-4
Surface Mount LED Indicator
Data Sheet
Description
The Super 0.5W Warm White Power PLCC-4 SMT LED is
Warm white mid-Power PLCC-4 SMT LEDs using InGaN
chip technology. The package can be driven at high
current due to its superior package design. The product
is able to dissipate the heat more efficiently compared to
the Power PLCC-4 SMT LEDs. These LEDs produce higher
light output with better flux performance compared to
the Power PLCC-4 SMT LED.
The Super 0.5W Warm White Power PLCC-4 SMT LEDs are
designed for higher reliability, better performance, and
operate under a wide range of environmental conditions.
The performance characteristics of these new mid-power
LEDs make them uniquely suitable for use in harsh condi-
tions such as in automotive applications, and in electronics
signs and signals.
To facilitate easy pick and place assembly, the LEDs are
packed in EIA-compliant tape and reel. Every reel is
shipped in single intensity and color bin, to provide close
uniformity.
Features
•
Industry Standard PLCC 4 platform (3.2x2.8x1.9mm)
•
High reliability package with enhanced silicone resin
encapsulation
•
High brightness with optimum flux performance
using InGaN chip technologies
•
Available in Warm White
•
Available in 8mm carrier tape & 7 inch reel
•
Low Thermal Resistance 40°C/W
•
Wide viewing angle at 120 degree
•
JEDEC MSL 2
Applications
1. Interior automotive
a. Instrument panel backlighting
b. Central console backlighting
c. Navigation and audio system backlighting
d. Dome/Map lighting
e. Push button backlighting
f. Puddle lamp
g. Glove compartment illumination
2. Exterior automotive
a. Number plate illumination
3. Electronic signs and signals
a. Decorative lighting
4. Office automation, home appliances, industrial equipment
a. Panel/button backlighting
b. Display backl-ighting
CAUTION:
ASMT-QYBB-Nxxxx LEDs are Class 2 ESD sensitive. Please observe appropriate precautions
during handling and processing. Refer to Avago Application Note AN-1142 for additional details.
Package Drawing
2.2 ± 0.2
A
A
1.9 ± 0.2
0.79 ± 0.3
2.8 ± 0.2
0.6 ± 0.3
1.15 ± 0.2
3.6 ± 0.2
3.2 ± 0.2
Ø 2.4
0.97
C
CATHODE
MARKING
C
0.7
Note:
1. All Dimensions in millimeters.
2. Lead Polarity as shown in Figure 12.
3. Terminal Finish: Ag plating
4. Encapsulation material: Silicone resin
Figure 1. Package Drawing
Table 1. Device Selection Guide (T
J
= 25 °C)
Luminous Flux,
Φ
V[1]
(lm)
Color
Warm White
Part Number
ASMT-QYBB-NFG0E
Min. Flux (lm)
15.0
Typ. Flux (lm)
22.5
Max. Flux (lm)
25.5
0.56 (TYP.)
0.41 (TYP.)
Test Current (mA)
150
Dice Technology
InGaN
Notes:
1.
Φ
V
is the total luminous flux output as measured with an integrating sphere at mono pulse conditions.
2. Tolerance = ±12%
Part Numbering System
A S M T - Q X
1
B B – N X
2
X
3
X
4
X
5
Packaging Option
Colour Bin Selection
Max. Flux Bin Selection
Min. Flux Bin Selection
Color
Y - Warm White
2
Table 2. Absolute Maximum Ratings (T
A
= 25°C)
Parameters
DC Forward Current
[1]
Peak Forward Current
[2]
Power Dissipation
Reverse Voltage
Junction Temperature
Operating Temperature
Storage Temperature
Notes:
1. Derate Linearly as shown in Figure 6.
2. Duty Factor = 10%, Frequency = 1kHz
ASMT-QYBB-Nxxxx
150 mA
300 mA
615 mW
Not Recommended
125°C
-40°C to +110°C
-40°C to +110°C
Table 3. Optical Characteristics (T
J
= 25°C)
Typical
Chromaticity
Coordinates
x
0.41
Color
Warm White
Part Number
ASMT-QYBB-Nxxxx
Dice
Technology
InGaN
Viewing
Angle 2θ
½[1]
(Degrees)
Typ.
120
Luminous
Efficiency
η
e
(lm/W)
Typ.
43
Total Flux /
Luminous Intensity
Φ
V
(lm) / I
V
(cd)
Typ.
2.85
y
0.39
Notes:
1. θ½ is the off-axis angle where the luminous intensity is ½ the peak intensity.
Table 4. Electrical Characteristics (T
J
= 25°C)
Forward Voltage V
F
(Volts) @ I
F
= 150 mA
Part Number
ASMT-QYBB-NxxxE
Typ.
3.5
Max.
4.1
Thermal Resistance Rθ
J-P
(°C/W)
40
3
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
380
300
250
FORWARD CURRENT - mA
430
480
530
580
630
WAVELENGTH - nm
680
730
780
RELATIVE INTENSITY
200
150
100
50
0
0
1
2
FORWARD VOLTAGE - V
3
4
Figure 2. Relative Intensity Vs. Wavelength
Figure 3. Forward Current Vs. Forward Voltage.
1.0
1.4
1.2
RELATIVE LUMINOUS FLUX
(NORMALIZED AT 25°C)
RELATIVE LUMINOUS FLUX
(NORMALIZED AT 150 mA)
0.8
0.6
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
-50
-25
0
25
50
T J - JUNCTION TEMPERATURE - °C
75
100
0
25
50
75
100
DC FORWARD CURRENT - mA
125
150
Figure 4. Relative Flux vs. Forward Current
Figure 5. Relative Flux Vs. Temperature
160
140
120
CURRENT - mA
100
80
60
40
20
0
0
20
40
60
80
TEMPERATURE (°C)
100
120
Rθ JA = 90°C/W
CURRENT - mA
Rθ JA = 110°C/W
160
140
120
100
80
60
40
20
0
0
20
40
60
80
TEMPERATURE (°C)
100
120
Rθ
JP
= 40°C/W
Figure 6a. Maximum Forward Current Vs. Ambient Temperature.
Derated Based on T
JMAX
= 125°C, Rθ
J-A
=110°C/W & 90°C/W.
0.40
0.30
CURRENT - A
0.20
0.10
D=
0.05
0.10
0.25
0.50
1
Figure 6b. Maximum Forward Current Vs. Solder Point Temperature.
Derated Based on T
JMAX
= 125°C, Rθ
J-P
=40°C/W.
0.40
D=
0.30
CURRENT - A
0.20
0.10
t
p
T
t
p
T
I
F
4
D=
0.05
0.10
0.25
0.50
1
t
p
0
20
40
60
80
TEMPERATURE (°C)
100
120
0
20
40
60
80
TEMPERATURE (°C)
100
120
0.40
0.30
CURRENT - A
0.20
0.10
0.00
0.00001 0.0001 0.001
D=
0.05
0.10
0.25
0.50
1
0.40
D=
0.30
CURRENT - A
0.20
0.10
T
10
I
F
100
0.00
0.00001 0.0001 0.001
0.01
0.1
t
p
- Time - (s)
0
t
p
T
t
p
T
I
F
D=
0.05
0.10
0.25
0.50
1
t
D=
p
T
0.01
0.1
t
p
- Time - (s)
0
t
p
10
100
Figure 7a. Maximum Pulse Current Vs. Ambient Temperature.
Derated Based on T
A
= 25°C, Rθ
J-A
=110°C/W.
Figure 7b. Maximum Pulse Current Vs. Ambient Temperature.
Derated Based on T
A
= 85°C, Rθ
J-P
=110°C/W.
0.20
150mA
100mA
FORWARD VOLTAGE SHIFT - V
0.15
0.05
0.00
-0.05
-0.10
-0.15
-0.20
-50
-25
0
25
50
75
T J - JUNCTION TEMPERATURE - °C
100
NORMALIZED INTENSITY
0.10
01
0.002
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-90
-60
-30
0
30
60
ANGULAR DISPLACEMENT - DEGREES
90
Figure 8. Forward Voltage Shift Vs. Temperature.
Figure 9. Radiation Pattern
5