首页 > 器件类别 > 存储 > 存储

AT45D081-RC

8-Megabit 5-volt Only Serial DataFlash

器件类别:存储    存储   

厂商名称:Atmel (Microchip)

下载文档
AT45D081-RC 在线购买

供应商:

器件:AT45D081-RC

价格:-

最低购买:-

库存:点击查看

点击购买

器件参数
参数名称
属性值
是否Rohs认证
不符合
厂商名称
Atmel (Microchip)
零件包装代码
SOIC
包装说明
SOP, SOP28,.5
针数
28
Reach Compliance Code
unknown
ECCN代码
EAR99
最大时钟频率 (fCLK)
10 MHz
JESD-30 代码
R-PDSO-G28
JESD-609代码
e0
长度
18.25 mm
内存密度
8388608 bit
内存集成电路类型
FLASH
内存宽度
8
湿度敏感等级
2
功能数量
1
端子数量
28
字数
1048576 words
字数代码
1000000
工作模式
SYNCHRONOUS
最高工作温度
70 °C
最低工作温度
组织
1MX8
封装主体材料
PLASTIC/EPOXY
封装代码
SOP
封装等效代码
SOP28,.5
封装形状
RECTANGULAR
封装形式
SMALL OUTLINE
并行/串行
SERIAL
峰值回流温度(摄氏度)
225
电源
5 V
编程电压
5 V
认证状态
Not Qualified
座面最大高度
2.79 mm
串行总线类型
SPI
最大待机电流
0.00002 A
最大压摆率
0.05 mA
最大供电电压 (Vsup)
5.5 V
最小供电电压 (Vsup)
4.5 V
标称供电电压 (Vsup)
5 V
表面贴装
YES
技术
CMOS
温度等级
COMMERCIAL
端子面层
Tin/Lead (Sn/Pb)
端子形式
GULL WING
端子节距
1.27 mm
端子位置
DUAL
处于峰值回流温度下的最长时间
NOT SPECIFIED
类型
NOR TYPE
宽度
8.74 mm
写保护
HARDWARE
Base Number Matches
1
文档预览
AT45D081
Features
Single 4.5V - 5.5V Supply
Serial Interface Architecture
Page Program Operation
– Single Cycle Reprogram (Erase and Program)
– 4096 Pages (264 Bytes/Page) Main Memory
Two 264-Byte Data Buffers – Allows Receiving of Data while Reprogramming of
Non-Volatile Memory
Internal Program and Control Timer
Fast Page Program Time – 7 ms Typical
80
µs
Typical Page to Buffer Transfer Time
Low Power Dissipation
– 15 mA Active Read Current Typical
– 10
µA
CMOS Standby Current Typical
10 MHz Max Clock Frequency
Hardware Data Protection Feature
Serial Peripheral Interface (SPI) Compatible – Modes 0 and 3
CMOS and TTL Compatible Inputs and Outputs
Commercial and Industrial Temperature Ranges
8-Megabit
5-volt Only
Serial
DataFlash
AT45D081
Description
The AT45D081 is a 5-volt only, serial interface Flash memory suitable for in-system
reprogramming. Its 8,650,752 bits of memory are organized as 4096 pages of 264-
bytes each. In addition to the main memory, the AT45D081 also contains two data
buffers of 264-bytes each. The buffers allow receiving of data while a page in the main
memory is being reprogrammed. Unlike conventional Flash memories that are
accessed randomly with multiple address lines and a parallel interface, the DataFlash
uses a serial interface to sequentially access its data. The simple serial interface facil-
itates hardware layout, increases system reliability, minimizes switching noise, and
(continued)
Pin Configurations
Pin Name
CS
SCK
SI
SO
WP
RESET
RDY/BUSY
Function
Chip Select
Serial Clock
Serial Input
Serial Output
Hardware Page Write
Protect Pin
Chip Reset
Ready/Busy
TSOP Top View
Type 1
RDY/BUSY
RESET
WP
NC
NC
NC
VCC
GND
NC
NC
NC
NC
CS
SCK
SI
SO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SOIC
GND
NC
NC
CS
SCK
SI
SO
NC
NC
NC
NC
NC
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
VCC
NC
NC
WP
RESET
RDY/BUSY
NC
NC
NC
NC
NC
NC
NC
NC
0871A-A–6/97
1
reduces package size and active pin count. The device is
optimized for use in many commercial and industrial appli-
cations where high density, low pin count, low voltage, and
low power are essential. Typical applications for the
DataFlash are digital voice storage, image storage, and
data storage. The device operates at clock frequencies up
to 10 Mhz with a typical active read current consumption of
15 mA.
To allow for simple in-system reprogrammability, the
AT45D081 does not require high input voltages for pro-
gramming. The device operates from a single power sup-
ply, 4.5V to 5.5V, for both the program and read opera-
tions. The AT45D081 is enabled through the chip select pin
(CS) and accessed via a three-wire interface consisting of
the Serial Input (SI), Serial Output (SO), and the Serial
Clock (SCK).
All programming cycles are self-timed, and no separate
erase cycle is required before programming.
Block Diagram
WP
FLASH MEMORY ARRAY
PAGE (264 BYTES)
BUFFER 1 (264 BYTES)
BUFFER 2 (264 BYTES)
SCK
CS
RESET
V
CC
GND
RDY/BUSY
I/O INTERFACE
SI
SO
Device Operation
The device operation is controlled by instructions from the
host processor. The list of instructions and their associated
opcodes are contained in Tables 1 and 2. A valid instruc-
tion starts with the falling edge of CS followed by the appro-
priate 8-bit opcode and the desired buffer or main memory
address location. While the CS pin is low, toggling the SCK
pin controls the loading of the opcode and the desired
buffer or main memory address location through the SI
(serial input) pin. All instructions, addresses, and data are
transferred with the most significant bit (MSB) first.
address bits and 32 don’t care bits. In the AT45D081, the
first three address bits are reserved for larger density
devices (see Notes on page 7), the next 12 address bits
(PA11-PA0) specify the page address, and the next nine
address bits (BA8-BA0) specify the starting byte address
within the page. The 32 don’t care bits which follow the 24
address bits are sent to initialize the read operation. Fol-
lowing the 32 don’t care bits, additional pulses on SCK
result in serial data being output on the SO (serial output)
pin. The CS pin must remain low during the loading of the
opcode, the address bits, and the reading of data. When
the end of a page in main memory is reached during a main
memory page read, the device will continue reading at the
beginning of the same page. A low to high transition on the
CS pin will terminate the read operation and tri-state the
SO pin.
BUFFER READ:
Data can be read from either one of the
two buffers, using different opcodes to specify which buffer
to read from. An opcode of 54H is used to read data from
buffer 1, and an opcode of 56H is used to read data from
Read
By specifying the appropriate opcode, data can be read
from the main memory or from either one of the two data
buffers.
MAIN MEMORY PAGE READ:
A main memory read allows
the user to read data directly from any one of the 4096
pages in the main memory, bypassing both of the data buff-
ers and leaving the contents of the buffers unchanged. To
start a page read, the 8-bit opcode, 52H, is followed by 24
2
AT45D081
AT45D081
buffer 2. To perform a buffer read, the eight bits of the
opcode must be followed by 15 don’t care bits, nine
address bits, and eight don't care bits. Since the buffer size
is 264-bytes, nine address bits (BFA8-BFA0) are required
to specify the first byte of data to be read from the buffer.
The CS pin must remain low during the loading of the
opcode, the address bits, the don’t care bits, and the read-
ing of data. When the end of a buffer is reached, the device
will continue reading back at the beginning of the buffer. A
low to high transition on the CS pin will terminate the read
operation and tri-state the SO pin.
MAIN MEMORY PAGE TO BUFFER TRANSFER:
A page
of data can be transferred from the main memory to either
buffer 1 or buffer 2. An 8-bit opcode, 53H for buffer 1 and
55H for buffer 2, is followed by the three reserved bits, 12
address bits (PA11-PA0) which specify the page in main
memory that is to be transferred, and nine don’t care bits.
The CS pin must be low while toggling the SCK pin to load
the opcode, the address bits, and the don’t care bits from
the SI pin. The transfer of the page of data from the main
memory to the buffer will begin when the CS pin transitions
from a low to a high state. During the transfer of a page of
data (t
XFR
), the status register can be read to determine
whether the transfer has been completed or not.
MAIN MEMORY PAGE TO BUFFER COMPARE:
A page
of data in main memory can be compared to the data in
buffer 1 or buffer 2. An 8-bit opcode, 60H for buffer 1 and
61H for buffer 2, is followed by 24 address bits consisting of
the three reserved bits, 12 address bits (PA11-PA0) which
specify the page in the main memory that is to be com-
pared to the buffer, and nine don't care bits. The loading of
the opcode and the address bits is the same as described
previously. The CS pin must be low while toggling the SCK
pin to load the opcode, the address bits, and the don't care
bits from the SI pin. On the low to high transition of the CS
pin, the 264 bytes in the selected main memory page will
be compared with the 264 bytes in buffer 1 or buffer 2. Dur-
ing this time (t
XFR
), the status register will indicate that the
part is busy. On completion of the compare operation, bit 6
of the status register is updated with the result of the com-
pare.
BUFFER TO MAIN MEMORY PAGE PROGRAM WITH
BUILT-IN ERASE:
Data written into either buffer 1 or buffer
2 can be programmed into the main memory. An 8-bit
opcode, 83H for buffer 1 or 86H for buffer 2, is followed by
the three reserved bits, 12 address bits (PA11-PA0) that
specify the page in the main memory to be written, and
nine additional don't care bits. When a low to high transition
occurs on the CS pin, the part will first erase the selected
page in main memory to all 1s and then program the data
stored in the buffer into the specified page in the main
memory. Both the erase and the programming of the page
are internally self timed and should take place in a maxi-
mum time of t
EP
. During this time, the status register will
indicate that the part is busy.
BUFFER TO MAIN MEMORY PAGE PROGRAM WITH-
OUT BUILT-IN ERASE:
A previously erased page within
main memory can be programmed with the contents of
either buffer 1 or buffer 2. An 8-bit opcode, 88H for buffer 1
or 89H for buffer 2, is followed by the three reserved bits,
12 address bits (PA11-PA0) that specify the page in the
main memory to be written, and nine additional don’t care
bits. When a low to high transition occurs on the CS pin, the
part will program the data stored in the buffer into the spec-
ified page in the main memory. It is necessary that the
page in main memory that is being programmed has been
previously programmed to all 1s (erased state). The pro-
gramming of the page is internally self timed and should
take place in a maximum time of t
P
. During this time, the
status register will indicate that the part is busy.
MAIN MEMORY PAGE PROGRAM:
This operation is a
combination of the Buffer Write and Buffer to Main Memory
Page Program with Built-In Erase operations. Data is first
shifted into buffer 1 or buffer 2 from the SI pin and then pro-
grammed into a specified page in the main memory. An 8-
bit opcode, 82H for buffer 1 or 85H for buffer 2, is followed
by the three reserved bits and 21 address bits. The 12 most
significant address bits (PA11-PA0) select the page in the
main memory where data is to be written, and the next nine
address bits (BFA8-BFA0) select the first byte in the buffer
to be written. After all address bits are shifted in, the part
will take data from the SI pin and store it in one of the data
buffers. If the end of the buffer is reached, the device will
wrap around back to the beginning of the buffer. When
there is a low to high transition on the CS pin, the part will
first erase the selected page in main memory to all 1s and
then program the data stored in the buffer into the specified
page in the main memory. Both the erase and the program-
ming of the page are internally self timed and should take
place in a maximum of time t
EP
. During this time, the status
register will indicate that the part is busy.
AUTO PAGE REWRITE:
This mode is only needed if multi-
ple bytes within a page or multiple pages of data are modi-
fied in a random fashion. This mode is a combination of two
operations: Main Memory Page to Buffer Transfer and
Program
BUFFER WRITE:
Data can be shifted in from the SI pin
into either buffer 1 or buffer 2. To load data into either
buffer, an 8-bit opcode, 84H for buffer 1 or 87H for buffer 2,
is followed by 15 don't care bits and nine address bits
(BFA8-BFA0). The nine address bits specify the first byte in
the buffer to be written. The data is entered following the
address bits. If the end of the data buffer is reached, the
device will wrap around back to the beginning of the buffer.
Data will continue to be loaded into the buffer until a low to
high transition is detected on the CS pin.
3
Buffer to Main Memory Page Program with Built-In Erase.
A page of data is first transferred from the main memory to
buffer 1 or buffer 2, and then the same data (from buffer 1
or buffer 2) is programmed back into its original page of
main memory. An 8-bit opcode, 58H for buffer 1 or 59H for
buffer 2, is followed by the three reserved bits, 12 address
bits (PA11-PA0) that specify the page in main memory to
be rewritten, and nine additional don't care bits. When a
low to high transition occurs on the CS pin, the part will first
transfer data from the page in main memory to a buffer and
then program the data from the buffer back into same page
of main memory. The operation is internally self-timed and
should take place in a maximum time of t
EP
. During this
time, the status register will indicate that the part is busy.
If the main memory is programmed or reprogrammed
sequentially page by page, then the programming algo-
rithm shown in Figure 1 is recommended. Otherwise, if
multiple bytes in a page or several pages are programmed
randomly in the main memory, then the programming algo-
rithm shown in Figure 2 is recommended.
STATUS REGISTER:
The status register can be used to
determine the device’s ready/busy status, the result of a
Main Memory Page to Buffer Compare operation, or the
device density. To read the status register, an opcode of
57H must be loaded into the device. After the last bit of the
opcode is shifted in, the eight bits of the status register,
starting with the MSB (bit 7), will be shifted out on the SO
pin during the next eight clock cycles. The five most-signifi-
cant bits of the status register will contain device informa-
tion, while the remaining three least-significant bits are
reserved for future use and will have undefined values.
After bit 0 of the status register has been shifted out, the
sequence will repeat itself (as long as CS remains low and
SCK is being toggled) starting again with bit 7. The data in
the status register is constantly updated, so each repeating
sequence will output new data.
Ready/busy status is indicated using bit 7 of the status reg-
ister. If bit 7 is a 1, then the device is not busy and is ready
to accept the next command. If bit 7 is a 0, then the device
is in a busy state. The user can continuously poll bit 7 of the
status register by stopping SCK once bit 7 has been output.
The status of bit 7 will continue to be output on the SO pin,
and once the device is no longer busy, the state of SO will
change from 0 to 1. There are six operations which can
cause the device to be in a busy state: Main Memory Page
to Buffer Transfer, Main Memory Page to Buffer Compare,
Buffer to Main Memory Page Program with Built-In Erase,
Buffer to Main Memory Page Program without Built-In
Erase, Main Memory Page Program, and Auto Page
Rewrite.
The result of the most recent Main Memory Page to Buffer
Compare operation is indicated using bit 6 of the status
register. If bit 6 is a 0, then the data in the main memory
page matches the data in the buffer. If bit 6 is a 1, then at
least one bit of the data in the main memory page does not
match the data in the buffer.
The device density is indicated using bits 5, 4, and 3 of the
status register. For the AT45D081, the three bits are 1, 0,
and 0. The decimal value of these three binary bits does
not equate to the device density; the three bits represent a
combinational code relating to differing densities of Serial
DataFlash devices, allowing a total of eight different density
configurations.
Read/Program Mode Summary
The modes listed above can be separated into two groups
— modes which make use of the flash memory array
(Group A) and modes which do not make use of the flash
memory array (Group B).
Group A modes consist of:
1. Main memory page read
2. Main memory page to buffer 1 (or 2) transfer
3. Main memory page to buffer 1 (or 2) compare
4. Buffer 1 (or 2) to main memory page program with
built-in erase
5. Buffer 1 (or 2) to main memory page program with-
out built-in erase
6. Main memory page program
7. Auto page rewrite
Group B modes consist of:
1. Buffer 1 (or 2) read
2. Buffer 1 (or 2) write
3. Status read
If a Group A mode is in progress (not fully completed) then
another mode in Group A should not be started. However,
during this time in which a Group A mode is in progress,
modes in Group B can be started.
This gives the Serial DataFlash the ability to virtually
accommodate a continuous data stream. While data is
being programmed into main memory from buffer 1, data
can be loaded into buffer 2 (or vice versa). See application
note AN-4 (“Using Atmel’s Serial DataFlash”) for more
details.
Status Register Format
Bit 7
RDY/BUSY
Bit 6
COMP
Bit 5
1
Bit 4
0
Bit 3
0
Bit 2
X
Bit 1
X
Bit 0
X
4
AT45D081
AT45D081
HARDWARE PAGE WRITE PROTECT:
If the WP pin is
held low, the first 256 pages of the main memory cannot be
reprogrammed. The only way to reprogram the first 256
pages is to first drive the protect pin high and then use the
program commands previously mentioned.
RESET:
A low state on the reset pin (RESET) will terminate
the operation in progress and reset the internal state
machine to an idle state. The device will remain in the reset
condition as long as a low level is present on the RESET
pin. Normal operation can resume once the RESET pin is
brought back to a high level.
The device also incorporates an internal power-on reset cir-
cuit; therefore, there are no restrictions on the RESET pin
during power-on sequences.
READY/BUSY:
This open drain output pin will be driven
low when the device is busy in an internally self-timed oper-
ation. This pin, which is normally in a high state (through an
external pull-up resistor), will be pulled low during program-
ming operations, compare operations, and during page-to-
buffer transfers.
The busy status indicates that the Flash memory array and
one of the buffers cannot be accessed; read and write
operations to the other buffer can still be performed.
Absolute Maximum Ratings*
Temperature Under Bias ......................-55°C to +125°C
Storage Temperature............................-65°C to +150°C
All Input Voltages
(including NC Pins)
with Respect to Ground......................... -0.6V to +6.25V
All Output Voltages
with Respect to Ground................... -0.6V to V
CC
+ 0.6V
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.
DC and AC Operating Range
AT45D081
Operating Temperature (Case)
V
CC
Power Supply
(1)
Note:
Com.
Ind.
0°C to 70°C
-40°C to 85°C
4.5V to 5.5V
1. After power is applied and V
CC
is at the minimum specified data sheet value, the system should wait 20 ms before an oper-
ational mode is started.
5
查看更多>
参数对比
与AT45D081-RC相近的元器件有:AT45D081-TC、AT45D081、AT45D081-RI、AT45D081-TI。描述及对比如下:
型号 AT45D081-RC AT45D081-TC AT45D081 AT45D081-RI AT45D081-TI
描述 8-Megabit 5-volt Only Serial DataFlash 8-Megabit 5-volt Only Serial DataFlash 8-Megabit 5-volt Only Serial DataFlash 8-Megabit 5-volt Only Serial DataFlash 8-Megabit 5-volt Only Serial DataFlash
是否Rohs认证 不符合 不符合 - 不符合 不符合
厂商名称 Atmel (Microchip) Atmel (Microchip) - Atmel (Microchip) Atmel (Microchip)
零件包装代码 SOIC TSOP1 - SOIC TSOP1
包装说明 SOP, SOP28,.5 TSOP1, TSSOP32,.8,20 - SOP, SOP28,.5 TSOP1, TSSOP32,.8,20
针数 28 32 - 28 32
Reach Compliance Code unknown unknow - unknow unknow
ECCN代码 EAR99 EAR99 - EAR99 EAR99
最大时钟频率 (fCLK) 10 MHz 10 MHz - 10 MHz 10 MHz
JESD-30 代码 R-PDSO-G28 R-PDSO-G32 - R-PDSO-G28 R-PDSO-G32
JESD-609代码 e0 e0 - e0 e0
长度 18.25 mm 18.4 mm - 18.25 mm 18.4 mm
内存密度 8388608 bit 8388608 bi - 8388608 bi 8388608 bi
内存集成电路类型 FLASH FLASH - FLASH FLASH
内存宽度 8 8 - 8 8
湿度敏感等级 2 3 - 2 3
功能数量 1 1 - 1 1
端子数量 28 32 - 28 32
字数 1048576 words 1048576 words - 1048576 words 1048576 words
字数代码 1000000 1000000 - 1000000 1000000
工作模式 SYNCHRONOUS SYNCHRONOUS - SYNCHRONOUS SYNCHRONOUS
最高工作温度 70 °C 70 °C - 85 °C 85 °C
组织 1MX8 1MX8 - 1MX8 1MX8
封装主体材料 PLASTIC/EPOXY PLASTIC/EPOXY - PLASTIC/EPOXY PLASTIC/EPOXY
封装代码 SOP TSOP1 - SOP TSOP1
封装等效代码 SOP28,.5 TSSOP32,.8,20 - SOP28,.5 TSSOP32,.8,20
封装形状 RECTANGULAR RECTANGULAR - RECTANGULAR RECTANGULAR
封装形式 SMALL OUTLINE SMALL OUTLINE, THIN PROFILE - SMALL OUTLINE SMALL OUTLINE, THIN PROFILE
并行/串行 SERIAL SERIAL - SERIAL SERIAL
峰值回流温度(摄氏度) 225 240 - 225 240
电源 5 V 5 V - 5 V 5 V
编程电压 5 V 5 V - 5 V 5 V
认证状态 Not Qualified Not Qualified - Not Qualified Not Qualified
座面最大高度 2.79 mm 1.2 mm - 2.79 mm 1.2 mm
串行总线类型 SPI SPI - SPI SPI
最大待机电流 0.00002 A 0.00002 A - 0.00002 A 0.00002 A
最大压摆率 0.05 mA 0.05 mA - 0.05 mA 0.05 mA
最大供电电压 (Vsup) 5.5 V 5.5 V - 5.5 V 5.5 V
最小供电电压 (Vsup) 4.5 V 4.5 V - 4.5 V 4.5 V
标称供电电压 (Vsup) 5 V 5 V - 5 V 5 V
表面贴装 YES YES - YES YES
技术 CMOS CMOS - CMOS CMOS
温度等级 COMMERCIAL COMMERCIAL - INDUSTRIAL INDUSTRIAL
端子面层 Tin/Lead (Sn/Pb) Tin/Lead (Sn/Pb) - Tin/Lead (Sn/Pb) Tin/Lead (Sn/Pb)
端子形式 GULL WING GULL WING - GULL WING GULL WING
端子节距 1.27 mm 0.5 mm - 1.27 mm 0.5 mm
端子位置 DUAL DUAL - DUAL DUAL
处于峰值回流温度下的最长时间 NOT SPECIFIED NOT SPECIFIED - 30 NOT SPECIFIED
类型 NOR TYPE NOR TYPE - NOR TYPE NOR TYPE
宽度 8.74 mm 8 mm - 8.74 mm 8 mm
写保护 HARDWARE HARDWARE - HARDWARE HARDWARE
LED重要照明术语释义
如其他所有科技行业一样,照明行业也有其专业术语。这些特殊的用语和概念可以明确定义光源和灯具的特征,并...
zero3360 LED专区
CC3200到了,开箱,上电,第一个应用体验
不多说了, 看图。 CC3200到了,开箱,上电,第一个应用体验 {:1_103:}{:1_1...
guoqingcai 无线连接
IC Design 招聘(北京)系统移植工程师
jonathan@chinaeejob.com IC Design 招聘(北京)系统移植工程师 1....
liuxing168 嵌入式系统
转:TPS5430 正负电压大电流输出理论分析与实践应用
1、概述 平常我们用的比较多的是用 TPS5430 产生正电压,其高达3A的大电流能力...
qwqwqw2088 模拟与混合信号
硬件设计经验之鸡毛蒜皮小事
鸡毛蒜皮之一:成本节约 现象一:这些拉高/拉低的电阻用多大的阻值关系不大,就选个整数5K吧...
tiankai001 单片机
找一份示波器上BNC母头信号AD转换电路的原理?
找一份示波器上BNC母头信号AD转换电路的原理?示波器上四个通道的BNC头负极是连接在一起的,想了...
乱世煮酒论天下 模拟电子
热门器件
热门资源推荐
器件捷径:
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT BU BV BW BX BY BZ C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CO CP CQ CR CS CT CU CV CW CX CY CZ D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DO DP DQ DR DS DT DU DV DW DX DZ
需要登录后才可以下载。
登录取消