Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Compatible with MCS
®
-51 Products
20K Bytes of Reprogrammable Flash Memory
Endurance: 10,000 Write/Erase Cycles
4V to 5.5V Operating Range
Fully Static Operation: 0 Hz to 33 MHz
Three-level Program Memory Lock
256 x 8-bit Internal RAM
32 Programmable I/O Lines
Three 16-bit Timer/Counters
Eight Interrupt Sources
Programmable Serial Channel
Low-power Idle and Power-down Modes
Interrupt Recovery from Power-down Mode
Hardware Watchdog Timer
Dual Data Pointer
Power-off Flag
Green (Pb/Halide-free) Packaging Option
8-bit
Microcontroller
with 20K Bytes
Flash
AT89C55WD
1. Description
The AT89C55WD is a low-power, high-performance CMOS 8-bit microcontroller with
20K bytes of Flash programmable read only memory and 256 bytes of RAM. The
device is manufactured using Atmel’s high-density nonvolatile memory technology
and is compatible with the industry standard 80C51 and 80C52 instruction set and
pinout. The on-chip Flash allows the program memory to be user programmed by a
conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU
with Flash on a monolithic chip, the Atmel AT89C55WD is a powerful microcomputer
which provides a highly flexible and cost effective solution to many embedded control
applications.
The AT89C55WD provides the following standard features: 20K bytes of Flash, 256
bytes of RAM, 32 I/O lines, three 16-bit timer/counters, a six-vector, two-level interrupt
architecture, a full-duplex serial port, on-chip oscillator, and clock circuitry. In addition,
the AT89C55WD is designed with static logic for operation down to zero frequency
and supports two software selectable power saving modes. The Idle Mode stops the
CPU while allowing the RAM, timer/counters, serial port, and interrupt system to con-
tinue functioning. The Power-down Mode saves the RAM contents but freezes the
oscillator, disabling all other chip functions until the next external interrupt or hardware
reset.
1921D–MICRO–6/08
2. Pin Configurations
2.1
44A – 44-lead TQFP
P1.4
P1.3
P1.2
P1.1 (T2 EX)
P1.0 (T2)
NC
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
44
43
42
41
40
39
38
37
36
35
34
P1.5
P1.6
P1.7
RST
(RXD) P3.0
NC
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
33
32
31
30
29
28
27
26
25
24
23
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
NC
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
2.2
44J – 44-lead PLCC
P1.4
P1.3
P1.2
P1.1 (T2 EX)
P1.0 (T2)
NC
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
2.3
40P6 – 40-lead PDIP
(T2) P1.0
(T2EX) P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
(RXD) P3.0
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
(WR) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
P2.4 (A12)
P2.3 (A11)
P2.2 (A10)
P2.1 (A9)
P2.0 (A8)
2
AT89C55WD
1921D–MICRO–6/08
(WR) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
NC
(A8) P2.0
(A9) P2.1
(A10) P2.2
(A11) P2.3
(A12) P2.4
18
19
20
21
22
23
24
25
26
27
28
P1.5
P1.6
P1.7
RST
(RXD) P3.0
NC
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
7
8
9
10
11
12
13
14
15
16
17
6
5
4
3
2
1
44
43
42
41
40
(WR) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
GND
(A8) P2.0
(A9) P2.1
(A10) P2.2
(A11) P2.3
(A12) P2.4
39
38
37
36
35
34
33
32
31
30
29
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
NC
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
AT89C55WD
3. Block Diagram
P0.0 - P0.7
P2.0 - P2.7
V
CC
PORT 0 DRIVERS
GND
PORT 2 DRIVERS
RAM ADDR.
REGISTER
RAM
PORT 0
LATCH
PORT 2
LATCH
QUICK
FLASH
B
REGISTER
ACC
STACK
POINTER
PROGRAM
ADDRESS
REGISTER
TMP2
TMP1
BUFFER
ALU
INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS
PC
INCREMENTER
PSW
PROGRAM
COUNTER
PSEN
ALE/PROG
EA / V
PP
RST
PORT 1
LATCH
PORT 3
LATCH
TIMING
AND
CONTROL
INSTRUCTION
REGISTER
DUAL
DPTR
WATCH
DOG
OSC
PORT 1 DRIVERS
PORT 3 DRIVERS
P1.0 - P1.7
P3.0 - P3.7
3
1921D–MICRO–6/08
4. Pin Description
4.1
VCC
Supply voltage.
4.2
GND
Ground.
4.3
Port 0
Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL
inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.
Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses
to external program and data memory. In this mode, P0 has internal pull-ups.
Port 0 also receives the code bytes during Flash programming and outputs the code bytes dur-
ing program verification.
External pull-ups are required during program verification.
4.4
Port 1
Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can
sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the inter-
nal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low
will source current (I
IL
) because of the internal pull-ups.
In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input
(P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the follow-
ing table.
Port 1 also receives the low-order address bytes during Flash programming and verification.
Port Pin
P1.0
P1.1
Alternate Functions
T2 (external count input to Timer/Counter 2), clock-out
T2EX (Timer/Counter 2 capture/reload trigger and direction control)
4.5
Port 2
Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can
sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the inter-
nal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low
will source current (I
IL
) because of the internal pull-ups.
Port 2 emits the high-order address byte during fetches from external program memory and dur-
ing accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this
application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external
data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special
Function Register.
Port 2 also receives the high-order address bits and some control signals during Flash program-
ming and verification.
4
AT89C55WD
1921D–MICRO–6/08
AT89C55WD
4.6
Port 3
Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can
sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the inter-
nal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low
will source current (I
IL
) because of the pull-ups.
Port 3 receives some control signals for Flash programming and verification.
Port 3 also serves the functions of various special features of the AT89C55WD, as shown in the
following table.
Port Pin
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
Alternate Functions
RXD (serial input port)
TXD (serial output port)
INT0 (external interrupt 0)
INT1 (external interrupt 1)
T0 (timer 0 external input)
T1 (timer 1 external input)
WR (external data memory write strobe)
RD (external data memory read strobe)
4.7
RST
Reset input. A high on this pin for two machine cycles while the oscillator is running resets the
device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DISRTO
bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit
DISRTO, the RESET HIGH out feature is enabled.
4.8
ALE/PROG
Address Latch Enable is an output pulse for latching the low byte of the address during
accesses to external memory. This pin is also the program pulse input (PROG) during Flash
programming.
In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be
used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped dur-
ing each access to external data memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set,
ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high.
Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.
4.9
PSEN
Program Store Enable is the read strobe to external program memory.
When the AT89C55WD is executing code from external program memory, PSEN is activated
twice each machine cycle, except that two PSEN activations are skipped during each access to
external data memory.
5
1921D–MICRO–6/08