BTA12, BTB12, T12xx
12 A Snubberless™, logic level and standard triacs
Features
■
■
■
■
■
■
A2
Medium current triac
Low thermal resistance with clip bonding
Low thermal resistance insulation ceramic for
insulated BTA
High commutation (4Q) or very high
commutation (3Q) capability
BTA series UL1557 certified (File ref: 81734)
Packages are RoHS ( 2002/95/EC) compliant
A1 A2
G
A2
G
A1
A2
A1
A2
G
D
2
PAK
(T12-G)
I
2
PAK
(T12-R)
A2
Applications
ON/OFF or phase angle function in applications
such as static relays, light dimmers and appliance
motors speed controllers.
The snubberless versions (BTA/BTB...W and T12
series) are especially recommended for use on
inductive loads, because of their high
commutation performances. The BTA series
provides an insulated tab (rated at 2500 V RMS).
A1
A2
G
A1
A2
G
TO-220AB Insulated
(BTA12)
TO-220AB
(BTB12)
Order code
See
Ordering information on page 11
Description
Available either in through-hole or surface-mount
packages, the
BTA12, BTB12 and T12xx
triac
series is suitable for general purpose mains
power AC switching.
Table 1.
Device summary
Parameter
RMS on-state current
Repetitive peak off-state voltage
Triggering gate current
Triggering gate current
T12xx
12
600/800
10/35/50
-
BTA12
(1)
12
600/800
5/10/35/50
35/50
BTB12
12
600/800
5/10/35/50
35/50
Symbol
I
T(RMS)
V
DRM
/V
RRM
I
GT
(Snubberless)
I
GT
(Standard)
1.
Insulated
TM: Snubberless is a trademark of STMicroelectronics
September 2007
Rev 9
1/12
www.st.com
12
Characteristics
BTA12, BTB12, T12xx
1
Table 2.
Symbol
Characteristics
Absolute maximum ratings
Parameter
RMS on-state current
(full sine wave)
Non repetitive surge peak on-state
current (full cycle, T
j
initial = 25° C)
I
2
t Value for fusing
Critical rate of rise of on-state current
I
G
= 2 x I
GT
, t
r
≤
100 ns
Non repetitive surge peak off-state
voltage
Peak gate current
Average gate power dissipation
Storage junction temperature range
Operating junction temperature range
I
2
PAK / D
2
PAK /
TO-220AB
TO-220AB Ins.
F = 50 Hz
F = 60 Hz
t
p
= 10 ms
F = 120 Hz
t
p
= 10 ms
t
p
= 20 µs
T
j
= 125° C
T
j
= 25° C
T
j
= 125° C
T
j
= 125° C
I
TSM
I
2
t
dI/dt
T
c
= 105° C
T
c
= 90° C
t = 20 ms
t = 16.7 ms
120
A
126
78
50
V
DRM
/V
RRM
+ 100
4
1
- 40 to + 150
- 40 to + 125
A
²
s
A/µs
V
A
W
°C
Value
Unit
I
T(RMS)
12
A
V
DSM
/V
RSM
I
GM
P
G(AV)
T
stg
T
j
Table 3.
Electrical characteristics (T
j
= 25°C, unless otherwise specified)
Snubberless and logic level (3 quadrants)
T12xx
Symbol
I
GT (1)
V
GT
V
GD
I
H (2)
I
L
dV/dt
(2)
Test conditions
Quadrant
T1210
V
D
= 12 V
R
L
= 30
Ω
V
D
= V
DRM
R
L
= 3.3 kΩ
T
j
= 125° C
I
T
= 100 mA
I - III
I
G
= 1.2 I
GT
MAX.
II
MIN.
30
40
6.5
MIN.
2.9
6.5
12
60
500
80
1000
15
20
3.5
1
I - II - III
I - II - III
I - II - III
MAX.
MAX.
MIN.
MAX.
15
25
35
50
50
70
10
T1235
35
T1250
50
1.3
0.2
10
10
TW
5
BTA12 / BTB12
Unit
SW
10
CW
35
BW
50
mA
V
V
15
25
30
40
6.5
2.9
6.5
12
A/ms
35
50
60
500
50
70
mA
80
1000
V/µs
mA
V
D
= 67 %V
DRM
gate open
T
j
= 125° C
(dV/dt)c = 0.1 V/µs
T
j
= 125° C
(dI/dt)c
(2)
(dV/dt)c = 10 V/µs
T
j
= 125° C
Without snubber
T
j
= 125° C
1. Minimum I
GT
is guaranted at 5% of I
GT
max
2. for both polarities of A2 referenced to A1
2/12
BTA12, BTB12, T12xx
Table 4.
Electrical characteristics (T
j
= 25°C, unless otherwise specified)
standard (4 quadrants)
Characteristics
BTA12 / BTB12
Symbol
Test Conditions
Quadrant
C
I
GT (1)
V
GT
V
GD
I
H (2)
I
L
dV/dt
(2)
(dV/dt)c
(2)
V
D
= V
DRM
R
L
= 3.3 kΩ T
j
= 125° C
I
T
= 500 mA
I - III - IV
I
G
= 1.2 I
GT
V
D
= 67% V
DRM
gate open T
j
= 125° C
(dI/dt)c = 5.3 A/ms
T
j
= 125° C
MAX.
II
MIN.
MIN.
80
200
5
100
400
10
V/µs
V/µs
I - II - III
IV
ALL
ALL
MAX.
MAX.
MIN.
MAX.
25
40
25
50
1.3
0.2
50
50
mA
B
50
100
mA
V
V
mA
Unit
V
D
= 12 V
R
L
= 30
Ω
1. Minimum I
GT
is guaranted at 5% of I
GT
max.
2. for both polarities of A2 referenced to A1.
Table 5.
Symbol
V
T (1)
V
t0 (1)
R
d (1)
I
DRM
I
RRM
Static characteristics
Test conditions
I
TM
= 17 A
t
p
= 380 µs
T
j
= 25° C
T
j
= 125° C
T
j
= 125° C
T
j
= 25° C
T
j
= 125° C
MAX.
MAX.
MAX.
MAX.
1
mA
Value
1.55
0.85
35
5
Unit
V
V
mΩ
µA
Threshold voltage
Dynamic resistance
V
DRM
= V
RRM
1. for both polarities of A2 referenced to A1
Table 6.
Symbol
R
th(j-c)
Thermal resistance
Parameter
I
2
PAK / D
2
PAK / TO-220AB
Junction to case (AC)
TO-220AB insulated
Junction to ambient
S
(1)
= 1 cm
2
D
2
PAK
TO-220AB / I
2
PAK
TO-220AB insulated
2.3
45
°C/W
60
Value
1.4
°C/W
Unit
R
th(j-a)
1. Copper surface under tab.
3/12
Characteristics
BTA12, BTB12, T12xx
Figure 1.
P(W)
16
14
12
10
8
6
4
2
0
0
1
2
Maximum power dissipation versus Figure 2.
RMS on-state current (full cycle)
I
T(RMS)
(A)
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
8
9
10
11
12
0
RMS on-state current versus case
temperature (full cycle)
BTB / T12
BTA
I
T(RMS)
(A)
3
4
5
6
7
T
C
(°C)
25
50
75
100
125
Figure 3.
RMS on-state current versus
ambient temperature (printed
circuit board FR4, copper
thickness: 35µm) (full cycle)
Figure 4.
Relative variation of thermal
impedance versus pulse duration
I
T(RMS)
(A)
3.5
3.0
2.5
D
2
PAK
(S=1cm
2
)
K=[Z
th
/R
th
]
1E+0
Z
th(j-c)
Z
th(j-a)
2.0
1E-1
1.5
1.0
0.5
T
C
(°C)
0.0
0
25
50
75
100
125
1E-2
1E-3
1E-2
1E-1
t
p
(s)
1E+0
1E+1
1E+2
5E+2
Figure 5.
I
TM
(A)
100
T
j
max.
V
to
= 0.85V
R
d
= 35 m
Ω
On-state characteristics (maximum Figure 6.
values)
I
TSM
(A)
130
120
110
100
90
80
70
60
50
40
30
20
10
0
3.5
4.0
4.5
5.0
Surge peak on-state current versus
number of cycles
t=20ms
T
j
= T
j
max.
Non repetitive
T
j
initial=25°C
One cycle
10
T
j
= 25°C.
Repetitive
T
C
=90°C
V
TM
(V)
1
0.5
1.0
1.5
2.0
2.5
3.0
Number of cycles
1
10
100
1000
4/12
BTA12, BTB12, T12xx
Characteristics
Figure 7.
Non-repetitive surge peak on-state Figure 8.
current for a sinusoidal pulse with
width t
p
< 10 ms and corresponding
value of I
2
t
2.5
T
j
initial=25°C
Figure 8: Relative variation of gate
trigger current, holding current and
latching current versus junction
temperature (typical values)
I
TSM
(A), I
2
t (A
2
s)
1000
dI/dt limitation:
50A/µs
I
GT
,I
H
,I
L
[T
j
] / I
GT
,I
H
,I
L
[T
j
=25°C]
2.0
I
TSM
I
GT
1.5
100
I
2
t
1.0
I
H
& I
L
0.5
t
p
(ms)
10
0.01
0.10
1.00
10.00
0.0
-40
-20
0
20
T
j
(°C)
40
60
80
100
120
140
Figure 9.
Relative variation of critical rate of
decrease of main current versus
(dV/dt)c (typical values)
(BW/CW/T1210/T1235)
Figure 10. Relative variation of critical rate of
decrease of main current versus
(dV/dt)c (typical values) (TW)
(dI/dt)c [(dV/dt)c] / Specified (dI/dt)c
5.0
4.5
(dI/dt)c [(dV/dt)c] / Specified (dI/dt)c
2.8
2.4
2.0
1.6
1.2
0.8
0.4
C
B
T1235/T1250/CW/BW
T1210/SW
4.0
TW
3.5
3.0
2.5
2.0
1.5
1.0
(dV/dt)c (V/µs)
0.0
0.1
1.0
10.0
100.0
0.5
0.0
(dV/dt)c (V/µs)
0.1
1.0
10.0
100.0
Figure 11. Relative variation of critical rate of
decrease of main current versus
junction temperature
(dI/dt)c [T
j
] / (dI/dt)c [T
j
specified]
6
5
4
Figure 12. D
2
PAK thermal resistance junction
to ambient versus copper surface
under tab (printed circuit board
FR4, copper thickness: 35 µm)
R
th(j-a)
(°C/W)
80
70
60
50
3
2
1
40
30
20
10
D
2
PAK
T
j
(°C)
0
0
25
50
75
100
125
0
0
4
8
12
16
S(cm²)
20
24
28
32
36
40
5/12