Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Flexible Termination System (FT-CAP), C0G Dielectric,
10 – 250 VDC (Commercial & Automotive Grade)
Overview
KEMET’s Flexible Termination (FT-CAP) Multilayer Ceramic
Capacitor in C0G dielectric incorporates a unique, flexible
termination system that is integrated with KEMET’s
standard termination materials. A conductive silver epoxy
is utilized between the base metal and nickel barrier
layers of KEMET’s standard termination system in order
to establish pliability while maintaining terminal strength,
solderability and electrical performance. This technology
was developed in order to address the primary failure
mode of MLCCs– flex cracks, which are typically the result
of excessive tensile and shear stresses produced during
board flexure and thermal cycling. Flexible termination
technology inhibits the transfer of board stress to the rigid
ceramic body, therefore mitigating flex cracks which can
result in low IR or short circuit failures.
Although this technology does not eliminate the potential
for mechanical damage that may propagate during extreme
environmental and handling conditions, it does provide
superior flex performance over standard termination
systems. FT-CAP complements KEMET’s Open Mode,
Floating Electrode (FE-CAP), Floating Electrode with
Flexible Termination (FF-CAP), and KEMET Power Solutions
(KPS) product lines by providing a complete portfolio of
flex mitigation solutions.
Combined with the stability of C0G dielectric and designed to
accommodate all capacitance requirements, these flex-robust
devices are RoHS Compliant, offer up to 5 mm of flex-bend
capability and exhibit no change in capacitance with respect
to time and voltage. Capacitance change with reference to
ambient temperature is limited to ±30 ppm/ºC from −55°C to
+125°C.
In addition to Commercial Grade, Automotive Grade devices
are available which meet the demanding Automotive
Electronics Council's AEC–Q200 qualification requirements.
Click image above for interactive 3D content
Open PDF in Adobe Reader for full functionality
Ordering Information
C
Ceramic
1206
X
563
Capacitance
Code (pF)
Two significant digits
and number of zeros.
Use 9 for 1.0 – 9.9 pF
Use 8 for 0.5 – .99 pF
e.g., 2.2 pF = 229
e.g., 0.5 pF = 508
J
Capacitance
Tolerance
1
B = ±0.10 pF
C = ±0.25 pF
D = ±0.5 pF
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
3
Rated
Voltage
(VDC)
8 = 10
4 = 16
3 = 25
5 = 50
1 = 100
2 = 200
A = 250
G
Dielectric
G = C0G
A
Failure
Rate/
Design
A = N/A
C
Termination Finish
2
C = 100% Matte Sn
L = SnPb (5% Pb minimum)
TU
Packaging/
Grade (C-Spec)
See
"Packaging
C-Spec
Ordering
Options
Table"
Case Size
Specification/
(L" x W")
Series
0603
0805
1206
1210
1812
1825
2220
2225
X = Flexible
Termination
1
2
Additional capacitance tolerance offerings may be available. Contact KEMET for details.
Additional termination finish options may be available. Contact KEMET for details.
Built Into Tomorrow
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1062_C0G_FT-CAP_SMD • 9/14/2020
1
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Flexible Termination System (FT-CAP), C0G Dielectric, 10 – 250 VDC (Commercial & Automotive Grade)
Packaging C-Spec Ordering Options Table
Packaging Type
1
Commercial Grade
1
Bulk Bag
7" Reel/Unmarked
13" Reel/Unmarked
7" Reel/Unmarked/2mm pitch
2
13" Reel/Unmarked/2mm pitch
2
7" Reel
13" Reel/Unmarked
7" Reel/Unmarked/2mm pitch
2
13" Reel/Unmarked/2mm pitch
2
1
1
Packaging/Grade
Ordering Code (C-Spec)
Not required (Blank)
TU
7411 (EIA 0603 and smaller case sizes)
7210 (EIA 0805 and larger case sizes)
7081
7082
Automotive Grade
3
AUTO
AUTO7411 (EIA 0603 and smaller case sizes)
AUTO7210 (EIA 0805 and larger case sizes)
3190
3191
Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging.
The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain
capacitors that have not been laser marked. The option to laser mark is not available on these devices. For more information see "Capacitor Marking".
2
The 2mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case
size devices. For more information regarding 2mm pitch option see "Tape & Reel Packaging Information".
3
Reeling tape options (Paper or Plastic) are dependent on capacitor case size (L" x W") and thickness dimension. See "Chip Thickness/Tape & Reel
Packaging Quantities" and "Tape & Reel Packaging Information".
3
For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information".
3
All Automotive packaging C-Specs listed exclude the option to laser mark components. The option to laser mark is not available on these devices. For
more information see "Capacitor Marking".
Benefits
•
•
•
•
•
•
•
•
•
•
−55°C to +125°C operating temperature range
Superior flex performance (up to 5 mm)
Lead (Pb)-Free, RoHS and REACH compliant
EIA 0603, 0805, 1206, 1210, 1812, 1825, 2220, and
2225 case sizes
DC voltage ratings of 10 V, 16 V, 25 V, 50 V, 100 V,
200 V, and 250 V
Capacitance offerings ranging from 0.5 pF up to 0.47 μF
Available capacitance tolerances of ±0.10pF, ±0.25 pF,
±0.5 pF, ±1%, ±2%, ±5%, ±10%, and ±20%
No piezoelectric noise
Extremely low ESR and ESL
High thermal stability
• High ripple current capability
• Preferred capacitance solution at line frequencies and into
the MHz range
• No capacitance change with respect to applied rated DC
voltage
• Negligible capacitance change with respect to temperature
from −55°C to +125°C
• Non-polar device, minimizing installation concerns
• 100% pure matte tin-plated termination finish allowing for
excellent solderability
• Commercial & Automotive (AEC–Q200) Grades available
• SnPb termination finish option available upon request
(5% Pb minimum)
Applications
Typical applications include critical timing, tuning, circuits requiring low loss, circuits with pulse, high current, decoupling,
bypass, filtering, transient voltage suppression and blocking, as well as energy storage in critical and safety relevant circuits
without (integrated) current limitation, including those subject to high levels of board flexure or temperature cycling.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1062_C0G_FT-CAP_SMD • 9/14/2020
2
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Flexible Termination System (FT-CAP), C0G Dielectric, 10 – 250 VDC (Commercial & Automotive Grade)
Automotive C-Spec Information
KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council.
Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive
Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process
warrant (PPAP).
Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, “AUTO.”
This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade
component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a
KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are
not granted the same “privileges” as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited
(see details below.)
Product Change Notification (PCN)
The KEMET product change notification system is used to communicate primarily the following types of changes:
• Product/process changes that affect product form, fit, function, and/or reliability
• Changes in manufacturing site
• Product obsolescence
KEMET Automotive
C-Spec
KEMET assigned
1
AUTO
1
Customer Notification Due To:
Process/Product change
Yes (with approval and sign off)
Yes (without approval)
Obsolescence*
Yes
Yes
Days Prior To
Implementation
180 days minimum
90 days minimum
KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.
Production Part Approval Process (PPAP)
The purpose of the Production Part Approval Process is:
• To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
• To provide the evidence that all customer engineering design records and specification requirements are properly
understood and fulfilled by the manufacturing organization.
• To demonstrate that the established manufacturing process has the potential to produce the part.
KEMET Automotive
C-Spec
KEMET assigned
1
AUTO
1
PPAP (Product Part Approval Process) Level
1
●
2
●
3
●
○
4
●
5
●
KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.
●
Part number specific PPAP available
○
Product family PPAP only
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1062_C0G_FT-CAP_SMD • 9/14/2020
3
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Flexible Termination System (FT-CAP), C0G Dielectric, 10 – 250 VDC (Commercial & Automotive Grade)
Dimensions – Millimeters (Inches)
W
L
T
B
S
EIA Size
Code
0603
0805
1206
1210
1812
1825
2220
2225
Metric Size
Code
1608
2012
3216
3225
4532
4564
5650
5664
L
Length
1.60 (0.064)
±0.17 (0.007)
2.00 (0.079)
±0.30 (0.012)
3.30 (0.130)
±0.40 (0.016)
3.30 (0.130)
±0.40 (0.016)
4.50 (0.178)
±0.40 (0.016)
4.60 (0.181)
±0.40 (0.016)
5.90 (0.232)
±0.75 (0.030)
5.90 (0.232)
±0.75 (0.030)
W
Width
0.80 (0.032)
±0.15 (0.006)
1.25 (0.049)
±0.30 (0.012)
1.60 (0.063)
±0.35 (0.013)
2.60 (0.102)
±0.30 (0.012)
3.20 (0.126)
±0.30 (0.012)
6.40 (0.252)
±0.40 (0.016)
5.00 (0.197)
±0.40 (0.016)
6.40 (0.248)
±0.40 (0.016)
T Thickness
B
Bandwidth
0.45 (0.018)
±0.15 (0.006)
0.50 (0.02)
±0.25 (0.010)
0.60 (0.024)
±0.25 (0.010)
0.60 (0.024)
±0.25 (0.010)
0.70 (0.028)
±0.35 (0.014)
0.70 (0.028)
±0.35 (0.014)
0.70 (0.028)
±0.35 (0.014)
0.70 (0.028)
±0.35 (0.014)
S
Separation
Minimum
0.58 (0.023)
0.75 (0.030)
Mounting
Technique
Solder Wave
or
Solder Reflow
See Table 2 for
Thickness
N/A
Solder Reflow
Only
Qualification/Certification
Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are
referenced in Table 4, Performance & Reliability.
Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details
regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive
Components. For additional information regarding the Automotive Electronics Council and AEC–Q200, please visit their
website at www.aecouncil.com.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1062_C0G_FT-CAP_SMD • 9/14/2020
4
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Flexible Termination System (FT-CAP), C0G Dielectric, 10 – 250 VDC (Commercial & Automotive Grade)
Environmental Compliance
Lead (Pb)-free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option).
Electrical Parameters/Characteristics
Item
Operating Temperature Range
Capacitance Change with Reference to
+25°C and 0 VDC Applied (TCC)
Aging Rate (Maximum % Capacitance Loss/Decade Hour)
1
Parameters/Characteristics
−55°C to +125°C
±30 ppm/ºC
0%
250% of rated voltage
(5±1 seconds and charge/discharge not exceeding 50 mA)
0.1%
1,000 megohm microfarads or 100 GΩ
(Rated voltage applied for 120±5 seconds at 25°C)
Dielectric Withstanding Voltage (DWV)
2
Dissipation Factor (DF) Maximum Limit at 25ºC
3
Insulation Resistance (IR) Limit at 25°C
DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the
capacitor.
2
Capacitance and dissipation factor (DF) measured under the following conditions:
1 MHz ±100 kHz and 1.0 Vrms ±0.2 V if capacitance ≤ 1,000 pF
1 kHz ±50 Hz and 1.0 Vrms ±0.2 V if capacitance > 1,000 pF
3
To obtain IR limit, divide MΩ-µF value by the capacitance and compare to GΩ limit. Select the lower of the two limits.
Capacitance and Dissipation Factor (DF) measured under the following conditions:
Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known
as Automatic Level Control (ALC). The ALC feature should be switched to "ON."
1
Post Environmental Limits
High Temperature Life, Biased Humidity, Moisture Resistance
Dielectric
C0G
Rated DC
Voltage
All
Capacitance
Value
All
Dissipation Factor
(Maximum %)
0.5
Capacitance
Shift
0.3% or ±0.25 pF
Insulation
Resistance
10% of Initial
Limit
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1062_C0G_FT-CAP_SMD • 9/14/2020
5