首页 > 器件类别 > 模拟混合信号IC > 转换器

CAT5114RI-10TE13

10K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 32 POSITIONS, PDSO8, MSOP-8

器件类别:模拟混合信号IC    转换器   

厂商名称:ON Semiconductor(安森美)

厂商官网:http://www.onsemi.cn

下载文档
器件参数
参数名称
属性值
是否无铅
含铅
是否Rohs认证
不符合
厂商名称
ON Semiconductor(安森美)
零件包装代码
MSOP
包装说明
TSSOP,
针数
8
Reach Compliance Code
compliant
ECCN代码
EAR99
文档预览
CAT5114
32‐tap Digital
Potentiometer (POT)
Description
The CAT5114 is a single digital POT designed as an electronic
replacement for mechanical potentiometers and trim pots. Ideal for
automated adjustments on high volume production lines, they are also
well suited for applications where equipment requiring periodic
adjustment is either difficult to access or located in a hazardous or
remote environment.
The CAT5114 contains a 32-tap series resistor array connected
between two terminals R
H
and R
L
. An up/down counter and decoder
that are controlled by three input pins, determines which tap is
connected to the wiper, R
W
. The wiper setting, stored in nonvolatile
memory, is not lost when the device is powered down and is
automatically reinstated when power is returned. The wiper can be
adjusted to test new system values without affecting the stored setting.
Wiper-control of the CAT5114 is accomplished with three input
control pins, CS, U/D, and INC. The INC input increments the wiper
in the direction which is determined by the logic state of the U/D input.
The CS input is used to select the device and also store the wiper
position prior to power down.
The digital POT can be used as a three-terminal resistive divider or
as a two-terminal variable resistor. Digital POTs bring variability and
programmability to a wide variety of applications including control,
parameter adjustments, and signal processing.
Features
http://onsemi.com
SOIC−8
V SUFFIX
CASE 751BD
MSOP−8
Z SUFFIX
CASE 846AD
PDIP−8
L SUFFIX
CASE 646AA
TSSOP−8
Y SUFFIX
CASE 948AL
TDFN−8
VP2 SUFFIX
CASE 511AK
32-position Linear Taper Potentiometer
Non-volatile EEPROM Wiper Storage
Low Standby Current
Single Supply Operation: 2.5 V
6.0 V
Increment Up/Down Serial Interface
Resistance Values: 10 kW, 50 kW and 100 kW
Available in PDIP, SOIC, TSSOP, MSOP and Space Saving
2
3 mm TDFN Packages
These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS
Compliant
Applications
PIN CONFIGURATIONS
INC
U/D
R
H
GND
1
V
CC
CS
R
L
R
WB
PDIP (L), SOIC (V), MSOP (Z)
1
CS
V
CC
INC
U/D
R
L
R
WB
GND
R
H
TSSOP (Y)
Automated Product Calibration
Remote Control Adjustments
Offset, Gain and Zero Control
Tamper-proof Calibrations
Contrast, Brightness and Volume Controls
Motor Controls and Feedback Systems
Programmable Analog Functions
INC
U/D
R
H
GND
1
V
CC
CS
R
L
R
WB
TDFN (VP2)
(Top Views)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 9 of this data sheet.
Semiconductor Components Industries, LLC, 2013
June, 2013
Rev. 23
1
Publication Order Number:
CAT5114/D
CAT5114
DEVICE MARKING INFORMATION
PDIP
SOIC
MSOP
TSSOP
RL4B
CAT5114LI
YMXXXX
RL4B
CAT5114VI
YMXXXX
ABMS
YMP
A4RL
4YMXXX
R = Resistance:
2 = 10 kW
4 = 50 kW
5 = 100 kW
L = Assembly Location
4 = Lead Finish
NiPdAu
B = Product Revision (Fixed as “B”)
CAT5114L = Device Code (PDIP)
CAT5114V = Device Code (SOIC)
I = Temperature Range (Industrial)
Y = Production Year (Last Digit)
M = Production Month (1−9, O, N, D)
XXXX = Last Four Digits of Assembly Lot Number
ABMS = CAT5114ZI−10−GT3
ABMT = CAT5114ZI−50−GT3
ABTH = CAT5114ZI−00−GT3
Y = Production Year (Last Digit)
M = Production Month (1−9, O, N, D)
P = Product Revision
A4 = Device Code
R = Resistance:
2 = 10 kW
4 = 50 kW
5 = 100 kW
L = Assembly Location
4 = Lead Finish
NiPdAu
Y = Production Year (last digit)
M = Production Month (1−9, O, N, D)
XXX = Last Three Digits of Assembly
XXX =
Lot Number
TDFN
EF = CAT5114VP2I10GT3
HF = CAT5114VP2I50GT3
GW = CAT5114VP2I00GT3
L = Assembly Location
XXX = Last Three Digits of Assembly Lot Number
Y = Production Year (Last Digit)
M = Production Month (1−9, O, N, D)
EFL
XXX
YM
Functional Diagram
U/D
INC
CS
R
H
/V
H
U/D
INC
CS
Control
and
Memory
Power On
Recall
GND
R
W
/V
W
5−Bit
Nonvolatile
Memory
5−Bit
Up/Down
Counter
31
30
29
28
32−
Position
Decoder
2
1
0
R
L
/V
L
R
W
/V
W
R
L
/V
L
R
W
/V
W
R
H
/V
H
R
H
/V
H
V
CC
Transfer
Gates
Resistor
Array
R
L
/V
L
V
CC
GND
Store and
Recall
Control
Circuitry
Figure 1. General
Figure 2. Detailed
Figure 3. Electronic
Potentiometer
Implementation
http://onsemi.com
2
CAT5114
Table 1. PIN DESCRIPTIONS
Name
INC
U/D
R
H
GND
R
W
R
L
CS
V
CC
Function
Increment Control
Up/Down Control
Potentiometer High Terminal
Ground
Wiper Terminal
Potentiometer Low Terminal
Chip Select
Supply Voltage
than the R
H
terminal. Voltage applied to the R
L
terminal
cannot exceed the supply voltage, V
CC
or go below ground,
GND. R
L
and R
H
are electrically interchangeable.
CS:
Chip Select
The chip select input is used to activate the control input of
the CAT5114 and is active low. When in a high state, activity
on the INC and U/D inputs will not affect or change the
position of the wiper.
Device Operation
The CAT5114 operates like a digitally controlled
potentiometer with R
H
and R
L
equivalent to the high and low
terminals and R
W
equivalent to the mechanical
potentiometer’s wiper. There are 32 available tap positions
including the resistor end points, R
H
and R
L
. There are 31
resistor elements connected in series between the R
H
and R
L
terminals. The wiper terminal is connected to one of the 32
taps and controlled by three inputs, INC, U/D and CS. These
inputs control a seven-bit up/down counter whose output is
decoded to select the wiper position. The selected wiper
position can be stored in nonvolatile memory using the INC
and CS inputs.
With CS set LOW the CAT5114 is selected and will
respond to the U/D and INC inputs. HIGH to LOW
transitions on INC will increment or decrement the wiper
(depending on the state of the U/D input and seven−bit
counter). The wiper, when at either fixed terminal, acts like
its mechanical equivalent and does not move beyond the last
position. The value of the counter is stored in nonvolatile
memory whenever CS transitions HIGH while the INC input
is also HIGH. When the CAT5114 is powered-down, the last
stored wiper counter position is maintained in the
nonvolatile memory. When power is restored, the contents
of the memory are recalled and the counter is set to the value
stored.
With INC set low, the CAT5114 may be de-selected and
powered down without storing the current wiper position in
nonvolatile memory. This allows the system to always
power up to a preset value stored in nonvolatile memory.
Pin Function
INC:
Increment Control Input
The INC input moves the wiper in the up or down direction
determined by the condition of the U/D input.
U/D:
Up/Down Control Input
The U/D input controls the direction of the wiper movement.
When in a high state and CS is low, any high-to-low
transition on INC will cause the wiper to move one
increment toward the R
H
terminal. When in a low state and
CS is low, any high-to-low transition on INC will cause the
wiper to move one increment towards the R
L
terminal.
R
H
:
High End Potentiometer Terminal
R
H
is the high end terminal of the potentiometer. It is not
required that this terminal be connected to a potential greater
than the R
L
terminal. Voltage applied to the R
H
terminal
cannot exceed the supply voltage, V
CC
or go below ground,
GND.
R
W
:
Wiper Potentiometer Terminal
R
W
is the wiper terminal of the potentiometer. Its position on
the resistor array is controlled by the control inputs, INC,
U/D and CS. Voltage applied to the R
W
terminal cannot
exceed the supply voltage, V
CC
or go below ground, GND.
R
L
:
Low End Potentiometer Terminal
R
L
is the low end terminal of the potentiometer. It is not
required that this terminal be connected to a potential less
http://onsemi.com
3
CAT5114
Table 2. OPERATION MODES
INC
High to Low
High to Low
High
Low
X
CS
Low
Low
Low to High
Low to High
High
U/D
High
Low
X
X
X
R
H
C
H
Operation
Wiper toward H
Wiper toward L
Store Wiper Position
No Store, Return to Standby
Standby
R
WI
R
W
C
W
C
L
R
L
Figure 4. Potentiometer Equivalent Circuit
Table 3. ABSOLUTE MAXIMUM RATINGS
Parameters
Supply Voltage
V
CC
to GND
Inputs
CS to GND
INC to GND
U/D to GND
H to GND
L to GND
W to GND
Operating Ambient Temperature
Industrial (‘I’ suffix)
Junction Temperature
Storage Temperature
Lead Soldering (10 s max)
Ratings
−0.5
to +7
−0.5
to V
CC
+0.5
−0.5
to V
CC
+0.5
−0.5
to V
CC
+0.5
−0.5
to V
CC
+0.5
−0.5
to V
CC
+0.5
−0.5
to V
CC
+0.5
−40
to +85
+150
−65
to 150
+300
Units
V
V
V
V
V
V
V
C
C
C
C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
Table 4. RELIABILITY CHARACTERISTICS
Symbol
V
ZAP
(Note 1)
I
LTH
(Notes 1, 2)
T
DR
N
END
Parameter
ESD Susceptibility
Latch-up
Data Retention
Endurance
Test Method
MIL−STD−883, Test Method 3015
JEDEC Standard 17
MIL−STD−883, Test Method 1008
MIL−STD−883, Test Method 1003
Min
2000
100
100
1,000,000
Typ
Max
Units
V
mA
Years
Stores
1. This parameter is tested initially and after a design or process change that affects the parameter.
2. Latch-up protection is provided for stresses up to 100 mA on address and data pins from
−1
V to V
CC
+ 1 V.
http://onsemi.com
4
CAT5114
Table 5. DC ELECTRICAL CHARACTERISTICS
(V
CC
= +2.5 V to +6 V unless otherwise specified)
Symbol
POWER SUPPLY
V
CC
I
CC1
I
CC2
I
SB1
(Note 4)
LOGIC INPUTS
I
IH
I
IL
V
IH2
V
IL2
R
POT
Input Leakage Current
Input Leakage Current
CMOS High Level Input Voltage
CMOS Low Level Input Voltage
V
IN
= V
CC
V
IN
= 0 V
2.5 V
V
CC
6 V
V
CC
x 0.7
−0.3
10
−10
V
CC
+ 0.3
V
CC
x 0.2
mA
mA
V
V
Operating Voltage Range
Supply Current (Increment)
V
CC
= 6 V, f = 1 MHz, I
W
= 0
V
CC
= 6 V, f = 250 kHz, I
W
= 0
Supply Current (Write)
Programming, V
CC
= 6 V
V
CC
= 3 V
Supply Current (Standby)
CS = V
CC
0.3 V
U/D, INC = V
CC
0.3 V or GND
2.5
6.0
100
50
1000
500
1
V
mA
mA
mA
mA
mA
Parameter
Conditions
Min
Typ
Max
Units
POTENTIOMETER CHARACTERISTICS
Potentiometer Resistance
−10
Device
−50
Device
−00
Device
Pot. Resistance Tolerance
V
RH
V
RL
INL
DNL
R
WI
I
W
TC
RPOT
TC
RATIO
V
N
C
H
/C
L
/C
W
fc
3.
4.
5.
6.
Voltage on R
H
pin
Voltage on R
L
pin
Resolution
Integral Linearity Error
Differential Linearity Error
Wiper Resistance
I
W
2
mA
I
W
2
mA
V
CC
= 5 V, I
W
= 1 mA
V
CC
= 2.5 V, I
W
= 1 mA
Wiper Current
TC of Pot Resistance
Ratiometric TC
Noise
Potentiometer Capacitances
Frequency Response
Passive Attenuator, 10 kW
100 kHz / 1 kHz
8/24
8/8/25
1.7
−4.4
300
20
0
0
3.2
0.5
0.25
70
150
1
0.5
200
400
4.4
10
50
100
20
V
CC
V
CC
%
V
V
%
LSB
LSB
W
W
mA
ppm/C
ppm/C
nV/Hz
pF
MHz
kW
This parameter is tested initially and after a design or process change that affects the parameter.
Latch−up protection is provided for stresses up to 100 mA on address and data pins from
−1
V to V
CC
+ 1 V.
I
W
= source or sink.
These parameters are periodically sampled and are not 100% tested.
http://onsemi.com
5
查看更多>
热门器件
热门资源推荐
器件捷径:
00 01 02 03 04 05 06 07 08 09 0A 0C 0F 0J 0L 0M 0R 0S 0T 0Z 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 1H 1K 1M 1N 1P 1S 1T 1V 1X 1Z 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 2G 2K 2M 2N 2P 2Q 2R 2S 2T 2W 2Z 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 3G 3H 3J 3K 3L 3M 3N 3P 3R 3S 3T 3V 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4M 4N 4P 4S 4T 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5E 5G 5H 5K 5M 5N 5P 5S 5T 5V 60 61 62 63 64 65 66 67 68 69 6A 6C 6E 6F 6M 6N 6P 6R 6S 6T 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7M 7N 7P 7Q 7V 7W 7X 80 81 82 83 84 85 86 87 88 89 8A 8D 8E 8L 8N 8P 8S 8T 8W 8Y 8Z 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9F 9G 9H 9L 9S 9T 9W
需要登录后才可以下载。
登录取消