EH1325ETTS-50.000M
EH13 25
Series
RoHS Compliant (Pb-free) 3.3V 14 Pin DIP Metal
Thru-Hole LVCMOS High Frequency Oscillator
Frequency Tolerance/Stability
±25ppm Maximum
Package
Operating Temperature Range
-40°C to +85°C
RoHS
Pb
Nominal Frequency
50.000MHz
ET
TS -50.000M
Pin 1 Connection
Tri-State (High Impedance)
Duty Cycle
50 ±10(%)
ELECTRICAL SPECIFICATIONS
Nominal Frequency
Frequency Tolerance/Stability
50.000MHz
±25ppm Maximum (Inclusive of all conditions: Calibration Tolerance at 25°C, Frequency Stability over the
Operating Temperature Range, Supply Voltage Changem Output Load Change, Output Load Change, 1st
Year Aging at 25°C, Shock, and Vibration)
±5ppm/year Maximum
-40°C to +85°C
3.3Vdc ±0.3Vdc
35mA Maximum (No Load)
2.7Vdc Minimum (IOH = -8mA)
0.5Vdc Maximum (IOL = +8mA)
6nSec Maximum (Measured at 20% to 80% of waveform)
50 ±10(%) (Measured at 50% of waveform)
30pF Maximum
CMOS
Tri-State (High Impedance)
70% of Vdd Minimum to Enable Output, 20% of Vdd Maximum to Disable Output, No Connect to Enable
Output.
±250pSec Maximum, ±100pSec Typical
±50pSec Maximum, ±40pSec Typical
10mSec Maximum
-55°C to +125°C
Aging at 25°C
Operating Temperature Range
Supply Voltage
Input Current
Output Voltage Logic High (Voh)
Output Voltage Logic Low (Vol)
Rise/Fall Time
Duty Cycle
Load Drive Capability
Output Logic Type
Pin 1 Connection
Tri-State Input Voltage (Vih and Vil)
Absolute Clock Jitter
One Sigma Clock Period Jitter
Start Up Time
Storage Temperature Range
ENVIRONMENTAL & MECHANICAL SPECIFICATIONS
Fine Leak Test
Gross Leak Test
Lead Integrity
Mechanical Shock
Resistance to Soldering Heat
Resistance to Solvents
Solderability
Temperature Cycling
Vibration
MIL-STD-883, Method 1014, Condition A
MIL-STD-883, Method 1014, Condition C
MIL-STD-883, Method 2004
MIL-STD-202, Method 213, Condition C
MIL-STD-202, Method 210
MIL-STD-202, Method 215
MIL-STD-883, Method 2003
MIL-STD-883, Method 1010
MIL-STD-883, Method 2007, Condition A
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 3/12/2011 | Page 1 of 6
EH1325ETTS-50.000M
MECHANICAL DIMENSIONS (all dimensions in millimeters)
15.240
±0.203
7.620
±0.203
1
14
7
8
5.08 MIN
5.08 MAX
13.2
MAX
MARKING
ORIENTATION
3
4
PIN
CONNECTION
Tri-State (High
Impedance)
Ground/Case Ground
Output
Supply Voltage
0.9 MAX
DIA 0.457
±0.100 (X4)
1
7
8
14
LINE MARKING
1
2
ECLIPTEK
EH13TS
EH13=Product Series
50.000M
XXYZZ
XX=Ecliptek Manufacturing
Code
Y=Last Digit of the Year
ZZ=Week of the Year
20.8 MAX
OUTPUT WAVEFORM & TIMING DIAGRAM
TRI-STATE INPUT
V
IH
V
IL
CLOCK OUTPUT
V
OH
80% of Waveform
50% of Waveform
20% of Waveform
V
OL
OUTPUT DISABLE
(HIGH IMPEDANCE
STATE)
t
PLZ
Fall
Time
Rise
Time
T
W
T
Duty Cycle (%) = T
W
/T x 100
t
PZL
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 3/12/2011 | Page 2 of 6
EH1325ETTS-50.000M
Test Circuit for CMOS Output
Oscilloscope
Frequency
Counter
+
+
Power
Supply
_
+
Voltage
Meter
_
Current
Meter
_
Supply
Voltage
(V
DD
)
Probe
(Note 2)
Output
0.01µF
(Note 1)
0.1µF
(Note 1)
Ground
C
L
(Note 3)
No Connect
or Tri-State
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and V
DD
pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value C
L
includes sum of all probe and fixture capacitance.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 3/12/2011 | Page 3 of 6
EH1325ETTS-50.000M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
High Temperature Solder Bath (Wave Solder)
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
Additional Notes
3°C/second Maximum
150°C
175°C
200°C
60 - 180 Seconds
3°C/second Maximum
217°C
60 - 150 Seconds
260°C Maximum for 10 Seconds Maximum
250°C +0/-5°C
20 - 40 seconds
6°C/second Maximum
8 minutes Maximum
Level 1
Temperatures shown are applied to back of PCB board and device leads
only. Do not use this method for product with the Gull Wing option.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 3/12/2011 | Page 4 of 6
EH1325ETTS-50.000M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
Low Temperature Infrared/Convection 185°C
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
Additional Notes
5°C/second Maximum
N/A
150°C
N/A
60 - 120 Seconds
5°C/second Maximum
150°C
200 Seconds Maximum
185°C Maximum
185°C Maximum 2 Times
10 seconds Maximum 2 Times
5°C/second Maximum
N/A
Level 1
Temperatures shown are applied to body of device. Use this method only
for product with the Gull Wing option.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 3/12/2011 | Page 5 of 6