CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. Pulse width limited by maximum junction temperature.
Electrical Specifications
PARAMETER
T
J
= 25
o
C, Unless Otherwise Specified
SYMBOL
BV
CES
I
CES
V
CE(SAT)
V
GE(TH)
I
GES
SSOA
V
GEP
Q
g(ON)
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
V
EC
t
rr
I
EC
= 30A
I
EC
= 30A, dI
EC
/dt = 200A/µs
I
EC
= 1A, dI
EC
/dt = 200A/µs
IGBT and Diode at T
J
= 125
o
C,
I
CE
= 30A,
V
CE
= 390V, V
GE
= 15V,
R
G
= 3Ω,
L = 200µH,
Test Circuit (Figure 24)
TEST CONDITIONS
I
C
= 250µA, V
GE
= 0V
V
CE
= 600V
I
C
= 30A,
V
GE
= 15V
T
J
= 25
o
C
T
J
= 125
o
C
T
J
= 25
o
C
T
J
= 125
o
C
MIN
600
-
-
-
-
4.5
-
150
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TYP
-
-
-
1.8
1.6
5.2
-
-
8.5
225
300
25
12
150
38
280
600
240
24
11
180
58
280
1000
450
2.2
40
30
MAX
-
250
2.8
2.6
2.0
7.0
±250
-
-
270
360
-
-
-
-
-
-
350
-
-
200
70
-
1200
750
2.5
55
42
UNITS
V
µA
mA
V
V
V
nA
A
V
nC
nC
ns
ns
ns
ns
µJ
µJ
µJ
ns
ns
ns
ns
µJ
µJ
µJ
V
ns
ns
Collector to Emitter Breakdown Voltage
Collector to Emitter Leakage Current
Collector to Emitter Saturation Voltage
Gate to Emitter Threshold Voltage
Gate to Emitter Leakage Current
Switching SOA
Gate to Emitter Plateau Voltage
On-State Gate Charge
I
C
= 250µA, V
CE
= 600V
V
GE
=
±20V
T
J
= 150
o
C, R
G
= 3Ω, V
GE
= 15V,
L = 100µH, V
CE
= 600V
I
C
= 30A, V
CE
= 300V
I
C
= 30A,
V
CE
= 300V
V
GE
= 15V
V
GE
= 20V
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 2)
Turn-On Energy (Note 2)
Turn-Off Energy (Note 3)
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 2)
Turn-On Energy (Note 2)
Turn-Off Energy (Note 3)
Diode Forward Voltage
Diode Reverse Recovery Time
IGBT and Diode at T
J
= 25
o
C,
I
CE
= 30A,
V
CE
= 390V,
V
GE
= 15V,
R
G
= 3Ω,
L = 200µH,
Test Circuit (Figure 24)
2
HGTG30N60A4D
Electrical Specifications
PARAMETER
Thermal Resistance Junction To Case
T
J
= 25
o
C, Unless Otherwise Specified
(Continued)
SYMBOL
R
θJC
IGBT
Diode
NOTES:
2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E
ON1
is the turn-on loss of the IGBT only. E
ON2
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T
J
as the IGBT. The diode type is specified in
Figure 24.
3. Turn-Off Energy Loss (E
OFF
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending
at the point where the collector current equals zero (I
CE
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
TEST CONDITIONS
MIN
-
-
TYP
-
-
MAX
0.27
0.65
UNITS
o
C/W
o
C/W
Typical Performance Curves
60
I
CE
, DC COLLECTOR CURRENT (A)
Unless Otherwise Specified
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
V
GE
= 15V
70
60
50
40
30
20
10
0
25
50
75
100
125
150
T
C
, CASE TEMPERATURE (
o
C)
200
T
J
= 150
o
C, R
G
= 3Ω, V
GE
= 15V, L = 500µH
150
100
50
0
0
100
200
300
400
500
600
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
700
FIGURE 1. DC COLLECTOR CURRENT vs CASE
TEMPERATURE
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA
t
SC
, SHORT CIRCUIT WITHSTAND TIME (µs)
18
V
CE
= 390V, R
G
= 3Ω, T
J
= 125
o
C
16
14
12
10
8
t
SC
6
4
10
I
SC
900
800
700
600
500
400
300
200
f
MAX
, OPERATING FREQUENCY (kHz)
T
C
300
75
o
C
V
GE
15V
f
MAX1
= 0.05 / (t
d(OFF)I
+ t
d(ON)I
)
100 f
MAX2
= (P
D
- P
C
) / (E
ON2
+ E
OFF
)
P
C
= CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
R
ØJC
= 0.27
o
C/W, SEE NOTES
T
J
= 125
o
C, R
G
= 3Ω, L = 200µH, V
CE
= 390V
30
3
10
30
60
11
12
13
14
15
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
V
GE
, GATE TO EMITTER VOLTAGE (V)
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME
3
I
SC
, PEAK SHORT CIRCUIT CURRENT (A)
500
HGTG30N60A4D
Typical Performance Curves
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
50
DUTY CYCLE < 0.5%, V
GE
= 12V
PULSE DURATION = 250µs
Unless Otherwise Specified
(Continued)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
50
DUTY CYCLE < 0.5%, V
GE
= 15V
PULSE DURATION = 250µs
40
40
30
30
20
T
J
= 125
o
C
T
J
= 150
o
C
T
J
= 25
o
C
20
T
J
= 125
o
C
10
T
J
= 150
o
C
T
J
= 25
o
C
10
0
0
1.5
2.0
0.5
1.0
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
2.5
0
0
0.5
1.0
1.5
2.0
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
2.5
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE
3500
E
ON2
, TURN-ON ENERGY LOSS (µJ)
3000
2500
2000
1500
1000
500
0
E
OFF
, TURN-OFF ENERGY LOSS (µJ)
R
G
= 3Ω, L = 200µH, V
CE
= 390V
1400
R
G
= 3Ω, L = 200µH, V
CE
= 390V
1200
1000
800
T
J
= 125
o
C, V
GE
= 12V OR 15V
600
400
200
0
T
J
= 25
o
C, V
GE
= 12V OR 15V
0
10
20
30
40
50
60
T
J
= 125
o
C, V
GE
= 12V, V
GE
= 15V
T
J
= 25
o
C, V
GE
= 12V, V
GE
= 15V
0
10
20
30
40
50
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
34
t
d(ON)I
, TURN-ON DELAY TIME (ns)
32
30
28
26
24
22
20
R
G
= 3Ω, L = 200µH, V
CE
= 390V
T
J
= 25
o
C, T
J
= 125
o
C, V
GE
= 12V
100
R
G
= 3Ω, L = 200µH, V
CE
= 390V
80
t
rI
, RISE TIME (ns)
T
J
= 125
o
C, V
GE
= 15V, V
GE
= 12V
60
T
J
= 25
o
C, V
GE
= 12V
40
T
J
= 25
o
C, T
J
= 125
o
C, V
GE
= 15V
20
T
J
= 25
o
C, V
GE
= 15V
0
60
0
10
20
30
40
50
60
0
10
20
30
40
50
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO
EMITTER CURRENT
4
HGTG30N60A4D
Typical Performance Curves
t
d(OFF)I
, TURN-OFF DELAY TIME (ns)
220
R
G
= 3Ω, L = 200µH, V
CE
= 390V
200
V
GE
= 12V, V
GE
= 15V, T
J
= 125
o
C
60
t
fI
, FALL TIME (ns)
T
J
= 125
o
C, V
GE
= 12V OR 15V
50
Unless Otherwise Specified
(Continued)
70
R
G
= 3Ω, L = 200µH, V
CE
= 390V
180
160
40
T
J
= 25
o
C, V
GE
= 12V OR 15V
30
140
V
GE
= 12V, V
GE
= 15V, T
J
= 25
o
C
120
0
10
20
30
40
50
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
20
0
10
20
30
40
50
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER
CURRENT
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
350
DUTY CYCLE < 0.5%, V
CE
= 10V
300 PULSE DURATION = 250µs
T
J
= 25
o
C
250
200
T
J
= 125
o
C
150
100
50
0
6
7
8
9
10
11
V
GE
, GATE TO EMITTER VOLTAGE (V)
12
T
J
= -55
o
C
V
GE
, GATE TO EMITTER VOLTAGE (V)
15.0
12.5
I
G(REF)
= 1mA, R
L
= 15Ω, T
J
= 25
o
C
V
CE
= 600V
10.0
7.5
5.0
2.5
0
V
CE
= 400V
V
CE
= 200V
0
50
100
150
200
250
Q
G
, GATE CHARGE (nC)
FIGURE 13. TRANSFER CHARACTERISTIC
E
TOTAL
, TOTAL SWITCHING ENERGY LOSS (mJ)
E
TOTAL
, TOTAL SWITCHING ENERGY LOSS (mJ)
FIGURE 14. GATE CHARGE WAVEFORMS
5
R
G
= 3Ω, L = 200µH, V
CE
= 390V, V
GE
= 15V
E
TOTAL
= E
ON2
+ E
OFF
20
4
I
CE
= 60A
T
J
= 125
o
C, L = 200µH, V
CE
= 390V, V
GE
= 15V
E
TOTAL
= E
ON2
+ E
OFF
16
3
12
2
I
CE
= 30A
1
I
CE
= 15A
8
I
CE
= 60A
4
I
CE
= 30A
I
CE
= 15A
0
3
10
100
R
G
, GATE RESISTANCE (Ω)
300
0
25
50
125
75
100
T
C
, CASE TEMPERATURE (
o
C)
150
FIGURE 15. TOTAL SWITCHING LOSS vs CASE
TEMPERATURE
FIGURE 16. TOTAL SWITCHING LOSS vs GATE RESISTANCE