D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
®
HIP9011
Data Sheet
January 6, 2006
FN4367.2
Engine Knock Signal Processor
The HIP9011 is used to provide a method of detecting
premature detonation often referred to as “Knock or Ping” in
internal combustion engines.
The IC is shown in the Simplified Block Diagram. The chip
can select between one of two sensors, if needed for
accurate monitoring or for “V” type engines. Internal control
via the SPI bus is fast enough to switch sensors between
each firing cycle. A programmable bandpass filter
processes the signal from either of the sensor inputs. The
bandpass filter can be selected to optimize the extraction
the engine knock or ping signals from the engine
background noise. Further single processing is obtained by
full wave rectification of the filtered signal and applying it to
an integrator whose output voltage level is proportional to
the knock signal amplitude. The chip is under
microprocessor control via a SPI interface bus.
Features
• Two Sensor Inputs
• Microprocessor Programmable
• Accurate and Stable Filter Elements
• Digitally Programmable Gain
• Digitally Programmable Time Constants
• Digitally Programmable Filter Characteristics
• On-Chip Crystal Oscillator
• Programmable Frequency Divider
• External Clock Frequencies up to 24MHz
- 4, 5, 6, 8, 10, 12, 16, 20, and 24MHz
• Operating Temperature Range -40
o
C to 125
o
C
• Pb-Free Plus Anneal Available (RoHS Compliant)
Ordering Information
PART
NUMBER
HIP9011AB
PART
MARKING
HIP9011AB
TEMP.
RANGE
(
o
C)
-40 to 125
-40 to 125
PACKAGE
20 Ld SOIC
20 Ld SOIC
(Pb-free)
PKG.
DWG. #
M20.3
M20.3
Applications
• Engine Knock Detector Processor
• Analog Signal Processing Where Controllable Filter
Characteristics are Required
HIP9011ABZ HIP9011ABZ
(See Note)
Add “T” suffix for tape and reel.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free
material sets; molding compounds/die attach materials and 100%
matte tin plate termination finish, which are RoHS compliant and
compatible with both SnPb and Pb-free soldering operations. Intersil
Pb-free products are MSL classified at Pb-free peak reflow
temperatures that meet or exceed the Pb-free requirements of
IPC/JEDEC J STD-020.
Simplified Block Diagram
CH0FB
CH0IN
CH0NI
CH1FB
CH1IN
CH1NI
-
+
3RD ORDER
ANTIALIASING FILTER
CHANNEL SELECT
SWITCHES
-
+
PROGRAMMABLE
GAIN
STAGE
2
-
0.111
64 STEPS
PROGRAMMABLE
BANDPASS
FILTER
1
-
20kHz
64 STEPS
ACTIVE
FULL WAVE
RECTIFIER
PROGRAMMABLE
INTEGRATOR
40
-
600µs
32 STEPS
OUTPUT
DRIVER INTOUT
AND
SAMPLE
AND HOLD
OSCIN
CLOCK OSCOUT
PROGRAMMABLE
DIVIDER
TO SWITCHED
CAPACITOR
NETWORKS
POWER SUPPLY
AND
BIAS CIRCUITS
VMID
V
DD
GND
REGISTERS
AND
STATE MACHINE
TEST
SPI
INTERFACE
SCK
CS
SI
SO
INT/HOLD
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774
|
Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 1999, 2006. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
HIP9011
Pinout
HIP9011
(SOIC)
TOP VIEW
V
DD
GND
VMID
INTOUT
NC
NC
INT/HOLD
CS
OSCIN
1
2
3
4
5
6
7
8
9
20 CH0NI
19 CH0IN
18 CH0FB
17 CH1FB
16 CH1IN
15 CH1NI
14 TEST
13 SCK
12 SI
11 SO
OSCOUT 10
Pin Descriptions
PIN
NUMBER
1
2
3
4
5, 6
7
8
9
10
11
DESIGNATION
V
DD
GND
V
MID
INTOUT
NC
INT/HOLD
CS
OSCIN
OSCOUT
SO
Five volt power input.
This pin is tied to ground.
This pin is connected to the internal mid-supply generator and is brought out for bypassing by a 0.022µF capacitor.
Buffered output of the integrator. Output signal is held by an internal Sample and Hold circuit when INT/HOLD is
low.
These pins are not internally connected. Do Not Use.
Selects whether the chip is in the Integrate Mode (Input High) or in the Hold Mode (Input Low). This pin has an
internal pull down.
A low input on this pin enables the chip to communicate over the SPI bus. This pin has an internal pull-up.
Input to inverter used for the oscillator circuit. A 4MHz crystal or ceramic resonator is connected between this pin and
pin 10. To bias the inverter, a 1.0MΩ to 10MΩ resistor is usually connected between this pin and pin 10.
Output of the inverter used for the oscillator. See pin 9 above.
Output of the chip SPI data bus. This is a three-state output that is controlled via the SPI bus. The output is
placed in the high impedance state by setting CS high when the chip is not selected. This high impedance state
can also be programmed by setting the LSB of the prescaler word to 1. This will take precedence over CS. A 0
enables the active state. The Diagnostic Mode overrides these conditions.
Input of the chip SPI data bus. Data length is eight bits. This pin has an internal pull-up.
Input from the SPI clock. Normally low, the data is transferred to the chip internal circuitry on the falling clock
edge. This pin has an internal pull up.
A low on this pin places the chip in the diagnostic mode. For normal operation this pin is tied high or left open.
This pin has an internal pull up.
Non-inverting input of Channel one.
Inverting input to channel one amplifier. A resistor is tied from this summing input to the transducer. A second
resistor is tied between this pin and pin 17, CH1FB to establish the gain of the amplifier.
Output of the channel one amplifier. This pin is used to apply feedback.
Output of the channel zero amplifier. This pin is used to apply feedback.
Inverting input to channel zero amplifier. Remainder same as channel one amplifier except feedback is applied
from pin 18.
Non-inverting input of Channel 0. Remainder the same as pin 16, except feedback is applied from terminal 18.
DESCRIPTION
12
13
14
15
16
17
18
19
20
SI
SCK
TEST
CH1NI
CH1IN
CH1FB
CH0FB
CH0IN
CH0NI
2
FN4367.2
January 6, 2006
HIP9011
Absolute Maximum Ratings
DC Logic Supply, V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7.0V
Output Voltage, V
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7.0V
Input Voltage, V
IN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V Max
Thermal Information
Thermal Resistance (Typical, Note 1)
θ
JA
(
o
C/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
120
Maximum Power Dissipation, P
D
For T
A
= -40
o
C to 70
o
C . . . . . . . . . . . . . . . . . . . . . . . 400mW Max
For T
A
= 70
o
C to 125
o
C, Derate Linearly at . . . . . . . . . . 6mW/
o
C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150
o
C
Maximum Storage Temperature Range, T
STG
. . . . -65
o
C to 150
o
C
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300
o
C
At a Distance 1/16
±1/32
inch, (1.59
±0.79mm)
from Case for
10s Max. (SOIC - Lead Tips Only)
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40
o
C to 125
o
C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1.
θ
JA
is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
PARAMETER
DC ELECTRICAL SPECIFICATIONS
Quiescent Supply Current
Midpoint Voltage, Pin 3
Midpoint Voltage, Pin 3
Low Input Voltage, Pins INT/HOLD, CS, SI, SCK
High Input Voltage, Pins INT/HOLD, CS, SI, SCK
Hysteresis voltage, Pins INT/HOLD, CS, SI, SCK
Internal Pull-Up Current
Internal Pull-Down Current
Low Level Output, Pin SO
High Level Output, Pin SO
Three-State Leakage Pin SO
Low Level Output, Pin 10, OSCOUT
High Level Output, Pin 10, OSCOUT
SPI BUS INTERFACE
AC Parametrics
CS Falling to SCLK Rising
CS Rising to SCLK Falling
SCLK Low
SCLK High
SCLK Falling to CS Rising
Data High Setup Time
Data Low Setup Time
Data High Hold Time
Data Low Hold Time
Min Time Between 2 Programmed Words
CS Rising to INT/Hold Rising
t
CCH
t
CCL
t
PWL
t
PWH
t
SCCH
t
SUH
t
SUL
t
HH
t
HL
t
CSH
t
CIH
10
80
60
60
60
20
20
10
10
200
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
µs
I
DD
V
MID
V
MID
V
IL
V
IH
V
HYST
I Source CS, SI, V
DD
= 5.0V, Measured at GND
SCK, TEST
I Sink,
INT/HOLD
V
OL
V
OH
I
L
V
OL
V
OH
V
DD
= 5.0V, Measured at V
DD
I
SOURCE
= 1.6mA, V
DD
= 5.0V
I
SINK
= 200µA, V
DD
= 5.0V
Measured at GND; V
DD
= 5.0V
I
SOURCE
= 500µA; V
DD
= 5.0V
I
SINK
= -500µA; V
DD
= 5.0V
V
DD
= 5.25V, GND = 0V
V
DD
= 5.0V, I
L
= 2mA Source
V
DD
= 5.0V, I
L
= 0mA
-
2.3
2.4
-
70
0.85
-
-
0.01
4.8
-
-
4.4
5.0
2.45
2.5
-
-
-
50
-50
-
4.9
-
-
-
8.0
2.55
2.6
30
-
-
-
-
0.30
5.0
±10
1.5
-
mA
V
V
% of V
DD
% of V
DD
V
µA
µA
V
V
µA
V
V
V
DD
= 5V
±5%,
GND = 0V, Clock Frequency 4MHz
±0.1%,
T
A
= -40
o
C to 125
o
C,
Unless Otherwise Specified
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
3
FN4367.2
January 6, 2006
HIP9011
Electrical Specifications
PARAMETER
INPUT AMPLIFIERS
CH0 and CH1 High Output Voltage
CH0 and CH1 Low Output Voltage
Voltage Gain
ANTIALIASING FILTER
Response 1kHz to 20kHz, Referenced to 1kHz
Attenuation at 180kHz, Referenced
to 1kHz
PROGRAMMABLE FILTERS
Peak to Peak Voltage Output
Filters Q (Note 2)
PROGRAMMABLE GAIN AMPLIFIERS
Percent Amplifier Gain Deviation
INTEGRATOR
Integrator Reset Voltage
V
RESET
Pin 4 Voltage at Start of
Integration
Cycle; V
DD
= 5.0V
Hold Mode, Pin 7 = 0V,
V
DD
= 5.0V
Pin 4 set to 20% to 80% of V
DD
75
125
175
mV
%G
Run Mode
-
±1
-
%
V
OUT
Q
Run Mode
Run Mode
3.5
-
4.0
2.5
-
-
V
P-P
Q
BW
ATTEN
Test Mode
Test Mode
-
-10
-0.5
-15
-
-
dB
dB
V
OUT
HI
V
OUT
LO
A
CL
I
SINK
= 100µA, V
DD
= 5.0V
I
SOURCE
= 100µA; V
DD
= 5.0V
Input R = 47.5K, Feedback
R = 475kΩ
4.7
-
+18
4.9
15
+20
-
200
+21
V
mV
dB
V
DD
= 5V
±5%,
GND = 0V, Clock Frequency 4MHz
±0.1%,
T
A
= -40
o
C to 125
o
C,
Unless Otherwise Specified
(Continued)
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Integrator Droop after 500µs
V
DROOP
-
±3
±50
mV
DIFFERENTIAL CONVERTER
Differential to Single Ended Converter Offset
Voltage
Change In Converter Output
SYSTEM GAIN DEVIATION
Gain Deviation from “Ideal Equation” Correlation
Factor + 5.0% (Note 3)
V
OUT
-
V
RESET
Run Mode, maximum signal
output from Input Amplifier
<2.25V
P-P
, Equation Output X
0.95 + Device Reset Voltage;
For Total V
OUT
≤
4.7V
8%,
-8%,
Equatio
±100mV
±100mV
n
X 0.95
-
V
RESET
V
DIFV
IO
DIFOUT
By Design
Run Mode, 500µA Sinking Load
to No Load Condition
-
-
0.1
±1
-
±10
mV
mV
NOTES:
2. Q = fo/BW, where: fo = Center Frequency, BW = 3dB Bandwidth
3.
Ideal Equation: INTOUT (Volts) =
[V
IN
* G
IN
* G
PR
* G
BPF
* 1/π * (N/t
C
(ms)
*
f
Q
(kHz)) * G
DSE
] + V
RESET
Where: V
IN
= input signal amplitude (V
P-P
)
G
IN
= External Input Gain; GIN = R
F
/R
IN
G
PR
= Programmed Gain
G
BPF
= Gain of Bandpass Filter (2 for Ideal Case at Center)
t
INT
= Integration Time; t
INT
= N/f
Q
0.318 = 1/
π
N = Number of Cycles of Input Signal
f
Q
= Frequency of Input Signal
R
F
= Feedback Resistor Value
R
IN
= Signal Input Resistor Value
t
C
= Programmed Time Constant
G
DSE
= Gain of DSE Converter (2 for Ideal Case)
V
RESET
= Integrator Reset Voltage = 0.125V, Typ
4
FN4367.2
January 6, 2006