Internally synchronized registered outputs eliminate the
need to control
OE
Single R/W (READ/WRITE) control pin
Positive clock-edge triggered address, data, and control
signal registers for fully pipelined applications
4-word burst capability (interleaved or linear)
Individual byte write (BW
1
-
BW
4
) control (May tie active)
Three chip enables for simple depth expansion
Single 3.3V power supply (±5%)
Packaged in a JEDEC standard 100-pin TQFP package
clock cycle, and two cycles later its associated data cycle occurs, be it
read or write.
The IDT71V546 contains data I/O, address and control signal regis-
ters. Output enable is the only asynchronous signal and can be used to
disable the outputs at any given time.
A Clock Enable (CEN) pin allows operation of the IDT71V546 to be
suspended as long as necessary. All synchronous inputs are ignored
when
CEN
is high and the internal device registers will hold their previous
values.
There are three chip enable pins (CE
1
, CE
2
,
CE
2
) that allow the user
to deselect the device when desired. If any one of these three is not active
when ADV/LD is low, no new memory operation can be initiated and any
burst that was in progress is stopped. However, any pending data
transfers (reads or writes) will be completed. The data bus will tri-state two
cycles after the chip is deselected or a write initiated.
The IDT71V546 has an on-chip burst counter. In the burst mode, the
IDT71V546 can provide four cycles of data for a single address presented
to the SRAM. The order of the burst sequence is defined by the
LBO
input
pin. The
LBO
pin selects between linear and interleaved burst sequence.
The ADV/LD signal is used to load a new external address (ADV/LD =
LOW) or increment the internal burst counter (ADV/LD = HIGH).
The IDT71V546 SRAM utilizes IDT's high-performance, high-volume
3.3V CMOS process, and is packaged in a JEDEC standard 14mm x
20mm 100- pin thin plastic quad flatpack (TQFP) for high board density.
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
Description
The IDT71V546 is a 3.3V high-speed 4,718,592-bit (4.5 Megabit)
synchronous SRAM organized as 128K x 36 bits. It is designed to
eliminate dead bus cycles when turning the bus around between reads
and writes, or writes and reads. Thus it has been given the name ZBT
TM
,
or Zero Bus Turn-around.
Address and control signals are applied to the SRAM during one
Pin Description Summary
A
0
- A
16
CE
1
, CE
2
,
CE
2
OE
R/W
CEN
BW
1
,
BW
2
,
BW
3
,
BW
4
CLK
ADV/LD
LBO
I/O
0
- I/O
31
, I/O
P1
- I/O
P4
V
DD
V
SS
Address Inputs
Three Chip Enables
Output Enable
Read/Write Signal
Clock Enable
Individual Byte Write Selects
Clock
Advance Burst Address / Load New Address
Linear / Interleaved Burst Order
Data Input/Output
3.3V Power
Ground
Input
Input
Input
Input
Input
Input
Input
Input
Input
I/O
Supply
Supply
Synchronous
Synchronous
Asynchronous
Synchronous
Synchronous
Synchronous
N/A
Synchronous
Static
Synchronous
Static
Static
3821 tbl 01
ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc. and the architecture is supported by Micron Technology and Motorola Inc.
RTC(Real Time Clock)是实时时钟的意思,它其实和TIM有点类似,也是利用计数的原理,选择RTC时钟源,再进行分频,到达计数的目的。 该文主要讲述关于RTC的秒中断功能,这个功能类似SysTIck系统滴答的功能。RTC秒中断功能其实是每计数一次就中断一次。注意,这里所说的秒中断并非一定是一秒的时间,它是由RTC时钟源和分频值决定的“秒”的时间,当然也是可以做到1秒钟中断一次。...[详细]
据Markets and markets最新报告指出,2017年全球安全系统集成市场达97.6亿美元,未来五年(2022年)将成长至147.2亿美元,年复合增长率为8.6%,从全球来看,推动该市场的主要动力来自企业整并、第三方应用部署、网络安全专业人员缺乏、企业物联网安全需求增长、携带自己的设备办公(BYOD)、云服务应用的普及等。 其中,网络安全预计将占未来最大的市场份额,在未来的五年内将主...[详细]
Optimizing Power Consumption in Vision Systems with Wake on Motion 利用运动唤醒功能优化视觉系统的功耗 您有没有想过,智能门铃如何检测到有人走到您家门口,又如何通过摄像头识别重要动作?答案就是图像传感器。 这些微型传感器内置在智能门铃中,始终以全状态(全分辨率、30fps)运行,其中记录的图像可以清楚地显示是什么人或什么...[详细]