IL211AT/212AT/213AT
Phototransistor
Small Outline Surface Mount
Optocoupler
Dimensions in inches (mm)
FEATURES
• High Current Transfer Ratio
IL211A, 20% Minimum
IL212A, 50% Minimum
IL213A, 100% Minimum
• Isolation Voltage, 3000 V
RMS
• Electrical Specifications Similar to
Standard 6 Pin Coupler
• Industry Standard SOIC-8A Surface
Mountable Package
• Standard Lead Spacing, .05"
• Available only on Tape and Reel Option
(Conforms to EIA Standard RS481A)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
• Underwriters Lab File #E52744
(Code Letter Y)
•
V
VDE 0884 Available with Option 1
D E
.120±.005
(3.05±.13)
.240
(6.10)
Pin One ID
.192±.005
(4.88±.13)
.004 (.10)
.008 (.20)
Anode
.154±.005 Cathode
C
L (3.91±.13)
NC
NC
.016 (.41)
.015±.002
(.38±.05)
.008 (.20)
.050 (1.27)
typ.
.021 (.53)
1
2
3
4
8
7
6
5
NC
Base
Collector
Emitter
40°
7°
.058±.005
(1.49±.13)
.125±.005
(3.18±.13)
Lead
Coplanarity
±.0015
(.04)
max.
5° max.
R.010
(.25) max.
.020±.004
(.51±.10)
2 plcs.
DESCRIPTION
The IL211AT/212AT/213AT are optically coupled pairs
with a Gallium Arsenide infrared LED and a silicon
NPN phototransistor. Signal information, including a
DC level, can be transmitted by the device while main-
taining a high degree of electrical isolation between
input and output. The IL211AT/212AT/213AT comes in
a standard SOIC-8 small outline package for surface
mounting which makes it ideally suited for high density
applications with limited space. In addition to eliminat-
ing through-holes requirements, this package con-
forms to standards for surface mounted devices.
A choice of 20, 50, and 100% minimum CTR at
I
F
=10 mA makes these optocouplers suitable for
a variety of different applications.
Maximum Ratings
Emitter
Peak Reverse Voltage .................................. 6.0 V
Continuous Forward Current ...................... 60 mA
Power Dissipation at 25
°
C......................... 90 mW
Derate Linearly from 25
°
C ................... 1.2 mW/
°
C
Detector
Collector-Emitter Breakdown Voltage............ 30 V
Emitter-Collector Breakdown Voltage........... 7.0 V
Collector-Base Breakdown Voltage............... 70 V
I
CMAX DC
..................................................... 50 mA
I
CMAX
(t<1.0 ms)....................................... 100 mA
Power Dissipation ................................... 150 mW
Derate Linearly from 25
°
C ................... 2.0 mW/
°
C
Package
Total Package Dissipation at 25
°
C Ambient
(LED + Detector).................................. 240 mW
Derate Linearly from 25
°
C ................... 3.2 mW/
°
C
Storage Temperature ................ –55
°
C to +150
°
C
Operating Temperature ............ –55
°
C to +100
°
C
Soldering Time at 260
°
C ........................... 10 sec.
Document Number: 83615
Revision 17-August-01
Characteristics
T
A
=25
°
C
Parameter
Emitter
Forward Voltage
Reverse Current
Capacitance
Detector
Breakdown Voltage
Dark Current,
Collector-Emitter
Capacitance,
Collector-Emitter
Package
DC
Current
Transfer
Ratio
IL211AT
IL212AT
IL213AT
CTR
DC
20
50
100
50
80
130
—
—
0.5
100
3.0
—
—
—
0.4
—
—
—
—
—
V
RMS
pF
G
Ω
µ
s
%
B
VCEO
B
VECO
30
7.0
—
—
5.0
10
—
—
50
—
V
V
nA
pF
Symbol
Min.
—
—
—
Typ.
1.3
0.1
13
Max.
1.5
100
—
Unit
V
µ
A
pF
Condition
V
F
I
R
C
0
I
F
=10 mA
V
R
=6.0 V
V
R
=0
I
C
=10
µ
A
I
E
=10
µ
A
I
CEOdark
—
C
CE
—
V
CE
=10 V
I
F
=0
V
CE
=0
I
F
=10 mA,
V
CE
=5.0 V
Saturation Voltage,
Collector-Emitter
Isolation Test
Voltage
Capacitance,
Input to Output
Resistance,
Input to Output
Switching Time
V
CEsat
V
IO
C
IO
R
IO
—
3000
—
—
—
I
F
=10 mA,
I
C
=2.0 mA
1 sec.
—
—
t
on
,
t
off
I
C
=2.0 mA,
R
L
=100
Ω
,
V
CC
=10 V
www.vishay.com
2–111
Figure 1. Forward voltage versus forward current
1.4
V
F
- Forward Voltage - V
1.3
1.2
1.1
1.0
0.9
0.8
0.7
.1
1
10
I
F
- Forward Current - mA
100
T
A
= 100°C
T
A
= -55°C
T
A
= 25°C
Figure 5. Normalized collector-base photocurrent
versus LED current
10
NIcb - Normalized Icb
1
Normalized to:
Vcb = 9.3 V
IF = 10 mA
Ta = 25 °C
.1
.01
.1
1
10
IF - LED Current - mA
100
Figure 2. Normalized non-saturated and saturated
CTR
ce
versus LED current
1.5
NCTRce - Normalized CTRce
Figure 6. Collector-base photocurrent versus
LED current
1000
Ta = 25°C
Vce = 5 V
Icb - Collector-base
C urrent - µA
1.0
Normalized to:
Vce = 10 V
IF = 10 mA
Ta = 25°C
100
10
1
.1
.1
Vcb = 9.3 V
0.5
Vce = 0.4 V
0.0
.1
1
10
100
1
10
100
IF - LED Current - mA
IF - LED Current - mA
Figure 3. Collector-emitter current versus LED current
150
Ta = 25°C
Vce = 10 V
Figure 7. Collector-emitter leakage current
versus temperature
I
CEO
- Collector-Emitter - nA
10
5
10
4
10
3
10
2
10
1
10
0
10
-1
10
-2
-20
20
40
60
80 100
T
A
- Ambient Temperature -
°C
0
V
CE
= 10 V
Typical
Ice - Collector-emitter
Current - mA
100
50
Vce = 0.4 V
0
.1
1
10
IF - LED Current - mA
100
Figure 4. Normalized collector-base photocurrent
versus LED current
Figure 8. Normalized saturated HFE versus base
current and temperature
2.0
NHFE(sat) - Normalized
Saturated HFE
100
NIcb - Normalized Icb
10
Normalized to:
Vcb = 9.3 V
IF = 1 mA
Ta = 25 °C
70°C
50°C
25°C
1.5
1.0
Normalized to:
Ib = 20µA
Vce = 10 V
Ta = 25 °C
1
Vce = 0.4 V
0.5
0.0
1
10
100
Ib - Base Current - µA
1000
.1
.1
1
10
IF - LED Current - mA
100
Document Number: 83615
Revision 17-August-01
www.vishay.com
2–112
Figure 9. Typical switching characteristics
versus base resistance
(saturated operation)
100
Figure 11. Switching time test schematic and waveform
V
CC
=5 V
INPUT
0
t
pdon
Switching time (µs)
Input:
IF =10mA
50 Pulse width=100 mS
Duty cycle=50%
Input
t
on
t
pdof
td
t
off
R
L
F
V
OUT
T
OF
OUTPUT
0
10%
50%
90%
t
r
t
s
t
r
10%
50%
90%
10
5
T
ON
1.0
10K
50K 100K
500K 1M
Base-emitter resistance, RBE (Ω)
Figure 10. Typical switching times
versus load resistance
1000
Input:
500 I
F
=10 mA
Pulse width=100 mS
Duty cycle=50%
100
50
10
5
1
Switching time (µS)
T
O
FF
T
ON
0.1
0.5 1
5
10
50 100
Load resistance RL (KΩ)
Document Number: 83615
Revision 17-August-01
www.vishay.com
2–113