PD - 94639A
AUTOMOTIVE MOSFET
IRF4104
IRF4104S
IRF4104L
HEXFET
®
Power MOSFET
D
Features
●
●
●
●
●
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
G
V
DSS
= 40V
R
DS(on)
= 5.5mΩ
S
Description
Specifically designed for Automotive applications,
this HEXFET
®
Power MOSFET utilizes the latest
processing techniques to achieve extremely low on-
resistance per silicon area. Additional features of
this design are a 175°C junction operating tempera-
ture, fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety
of other applications.
I
D
= 75A
Absolute Maximum Ratings
Parameter
TO-220AB
IRF4104
D
2
Pak
IRF4104S
Max.
120
84
75
470
140
TO-262
IRF4104L
Units
A
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
I
D
@ T
C
= 100°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Package limited)
Pulsed Drain Current
I
DM
P
D
@T
C
= 25°C Power Dissipation
Linear Derating Factor
V
GS
Gate-to-Source Voltage
E
AS (Thermally limited)
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
E
AS
(Tested )
W
W/°C
V
mJ
A
mJ
d
0.95
± 20
I
AR
E
AR
T
J
T
STG
Avalanche Current
Ã
h
120
220
See Fig.12a, 12b, 15, 16
-55 to + 175
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
g
i
°C
300 (1.6mm from case )
10 lbf in (1.1N m)
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
y
y
Typ.
Max.
1.05
–––
62
40
Units
°C/W
i
i
–––
0.50
–––
–––
Junction-to-Ambient (PCB Mount)
j
www.irf.com
1
8/29/03
IRF4104S/L
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
gfs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min. Typ. Max. Units
40
–––
–––
2.0
63
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.032
4.3
–––
–––
–––
–––
–––
–––
68
21
27
16
130
38
77
4.5
7.5
3000
660
380
2160
560
850
–––
–––
5.5
4.0
–––
20
250
200
-200
100
–––
–––
–––
–––
–––
–––
–––
nH
–––
–––
–––
–––
–––
–––
–––
pF
ns
nC
nA
V
Conditions
V
GS
= 0V, I
D
= 250µA
V/°C Reference to 25°C, I
D
= 1mA
mΩ V
GS
= 10V, I
D
= 75A
e
V
V
µA
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 10V, I
D
= 75A
V
DS
= 40V, V
GS
= 0V
V
DS
= 40V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
I
D
= 75A
V
DS
= 32V
V
GS
= 10V
V
DD
= 20V
I
D
= 75A
R
G
= 6.8
Ω
V
GS
= 10V
e
e
Between lead,
6mm (0.25in.)
from package
and center of die contact
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 32V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 32V
f
Source-Drain Ratings and Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
23
6.8
75
A
470
1.3
35
10
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 75A, V
GS
= 0V
T
J
= 25°C, I
F
= 75A, V
DD
= 20V
di/dt = 100A/µs
Ã
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRF4104S/L
1000
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
V
GS
1000
TOP
ID, Drain-to-Source Current (A)
100
10
ID, Drain-to-Source Current (A)
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
V
GS
100
4.5V
1
20µs PULSE WIDTH
Tj = 25°C
0.1
0.1
1
10
100
10
0.1
1
4.5V
20µs PULSE WIDTH
Tj = 175°C
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
120
ID, Drain-to-Source Current
(
A)
T J = 25°C
T J = 175°C
100
Gfs, Forward Transconductance (S)
100
80
60
T J = 25°C
TJ = 175°C
10
40
20
0
1
4
6
8
VDS = 15V
20µs PULSE WIDTH
10
12
VDS = 10V
380µs PULSE WIDTH
0
20
40
60
80
100
VGS, Gate-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Typical Forward Transconductance
Vs. Drain Current
www.irf.com
3
IRF4104S/L
5000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
20
ID= 75A
VDS= 32V
VDS= 20V
4000
VGS, Gate-to-Source Voltage (V)
16
C, Capacitance (pF)
Ciss
3000
12
2000
8
1000
Coss
Crss
4
0
1
10
100
0
0
20
40
60
80
100
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
1000.0
10000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100.0
T J = 175°C
10.0
T J = 25°C
1.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
100µsec
10
Tc = 25°C
Tj = 175°C
Single Pulse
0
1
10
1msec
10msec
100
1000
0.1
0.2
0.6
1.0
VGS = 0V
1.4
1.8
1
VSD, Source-toDrain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF4104S/L
120
LIMITED BY PACKAGE
100
ID , Drain Current (A)
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 75A
VGS = 10V
80
60
40
20
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
1.5
1.0
0.5
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature
Fig 10.
Normalized On-Resistance
Vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
J
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
3
τ
C
τ
τ
3
τ
1
τ
2
Ri (°C/W)
τi
(sec)
0.371
0.000272
0.337
0.001375
0.337
0.018713
0.01
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
0.001
1E-006
1E-005
0.0001
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5