PD - 97124D
IRF6710S2TRPbF
IRF6710S2TR1PbF
l
RoHS Compliant
Containing No Lead and Halogen Free
Typical values (unless otherwise specified)
l
Low Profile (<0.7 mm)
V
DSS
V
GS
R
DS(on)
R
DS(on)
l
Dual Sided Cooling Compatible
l
Ultra Low Package Inductance
25V max ±20V max 4.5mΩ@ 10V 9.0mΩ@ 4.5V
l
Optimized for High Frequency Switching
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
l
Ideal for CPU Core DC-DC Converters
l
Optimized for Control FET Application
8.8nC
3.0nC
1.3nC
8.0nC 4.4nC
1.8V
l
Compatible with existing Surface Mount Techniques
l
100% Rg tested
DirectFET Power MOSFET
Applicable DirectFET Outline and Substrate Outline
S1
S2
SB
M2
M4
L4
S1
L6
DirectFET ISOMETRIC
L8
Description
The IRF6710S2TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to
achieve improved performance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET pack-
age allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6710S2TRPbF has low gate resistance and low charge along with ultra low package inductance providing significant reduction in
switching losses. The reduced losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6710S2TRPbF has been optimized for the control FET socket of synchronous buck
operating from 12 volt bus converters.
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
D
@ T
C
= 25°C
I
DM
E
AS
I
AR
20
Typical R DS (on) (mΩ)
Max.
Units
V
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
e
e
f
Ãg
h
VGS, Gate-to-Source Voltage (V)
25
±20
12
10
37
100
24
10
12
10
8
6
4
2
0
0
4
8
12
16
20
ID= 10A
VDS = 20V
VDS= 13V
A
mJ
A
ID = 12A
15
10
TJ = 125°C
5
TJ = 25°C
0
2.0
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
VGS, Gate-to-Source Voltage (V)
24
QG Total Gate Charge (nC)
Fig 2.
Typical Total Gate Charge vs Gate-to-Source Voltage
Fig 1.
Typical On-Resistance vs. Gate Voltage
Notes:
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25°C, L = 0.49mH, R
G
= 25Ω, I
AS
= 10A.
www.irf.com
1
03/16/10
IRF6710S2TR/TR1PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
∆V
GS(th)
/∆T
J
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
R
G
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
25
–––
–––
–––
1.4
–––
–––
–––
–––
–––
21
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ. Max. Units
–––
17
4.5
9.0
1.8
-7.0
–––
–––
–––
–––
–––
8.8
2.3
1.3
3.0
2.2
4.3
4.4
0.3
7.9
20
5.2
6.0
1190
320
150
–––
–––
–––
–––
–––
–––
–––
pF
V
GS
= 0V
V
DS
= 13V
ƒ = 1.0MHz
ns
–––
–––
5.9
11.9
2.4
–––
1.0
150
100
-100
–––
13
–––
–––
–––
–––
–––
–––
nC
Ω
Conditions
V
GS
= 0V, I
D
= 250µA
V
mV/°C Reference to 25°C, I
D
= 1mA
mΩ V
GS
= 10V, I
D
= 12A
V
GS
= 4.5V, I
D
V
mV/°C
µA
nA
S
V
DS
= 20V, V
GS
= 0V
V
DS
= 20V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
V
DS
= 15V, I
D
=10A
V
DS
= 13V
nC
V
GS
= 4.5V
I
D
= 10A
See Fig. 15
V
DS
= 10V, V
GS
= 0V
V
DD
= 13V, V
GS
= 4.5V
I
D
= 10A
R
G
= 6.2Ω
V
DS
= V
GS
, I
D
= 25µA
i
= 10A
i
Ãi
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min.
–––
–––
–––
–––
–––
Typ. Max. Units
–––
–––
–––
14
8.0
19
A
100
1.0
21
12
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 10A, V
GS
= 0V
T
J
= 25°C, I
F
=10A
di/dt = 200A/µs
Ãg
i
i
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width
≤
400µs; duty cycle
≤
2%.
2
www.irf.com
IRF6710S2TR/TR1PbF
Absolute Maximum Ratings
P
D
@T
A
= 25°C
P
D
@T
A
= 70°C
P
D
@T
C
= 25°C
T
P
T
J
T
STG
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
e
e
f
Parameter
Max.
1.8
1.3
15
270
-55 to + 175
Units
W
°C
Thermal Resistance
R
θJA
R
θJA
R
θJA
R
θJC
R
θJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
100
el
jl
kl
fl
Parameter
Typ.
–––
12.5
20
–––
1.0
0.012
Max.
82
–––
–––
9.8
–––
Units
°C/W
eÃ
W/°C
D = 0.50
Thermal Response ( ZthJA )
0.20
10
0.10
0.05
0.02
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
C
τ
1
τ
2
τ
3
τ
3
τ
1
0.01
τ
J
Ri (°C/W)
τι
(sec)
0.1
Ci=
τi/Ri
Ci=
τi/Ri
11.759 0.009459
48.48669 0.9378
21.76032
37.2
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.1
1
10
100
0.01
1E-006
1E-005
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 3.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
Mounted on minimum footprint full size board with metalized
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
R
θ
is measured at
T
J
of approximately 90°C.
Used double sided cooling, mounting pad with large heatsink.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
www.irf.com
3
IRF6710S2TR/TR1PbF
1000
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
1000
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
10
BOTTOM
100
BOTTOM
1
10
0.1
2.5V
≤60µs
PULSE WIDTH
Tj = 25°C
2.5V
1
≤60µs
PULSE WIDTH
Tj = 175°C
10
100
0.01
0.1
1
10
100
VDS , Drain-to-Source Voltage (V)
0.1
1
VDS, Drain-to-Source Voltage (V)
Fig 4.
Typical Output Characteristics
1000
2.0
Fig 5.
Typical Output Characteristics
ID = 12A
ID, Drain-to-Source Current
(Α)
Typical RDS(on) (Normalized)
100
TJ = 175°C
TJ = 25°C
TJ = -40°C
1
VGS = 4.5V
VGS = 10V
1.5
10
1.0
0.1
VDS = 15V
0.01
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
≤60µs
PULSE WIDTH
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 6.
Typical Transfer Characteristics
10000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Fig 7.
Normalized On-Resistance vs. Temperature
30
T J = 25°C
25
Typical RDS(on) ( mΩ)
Coss = Cds + Cgd
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
C, Capacitance(pF)
20
15
10
5
1000
Ciss
Coss
Crss
100
1
10
VDS , Drain-to-Source Voltage (V)
100
0
0
20
40
60
80
100
Fig 8.
Typical Capacitance vs.Drain-to-Source Voltage
Fig 9.
Typical On-Resistance vs.
Drain Current and Gate Voltage
ID, Drain Current (A)
4
www.irf.com
IRF6710S2TR/TR1PbF
1000
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1msec
ISD, Reverse Drain Current (A)
100
TJ = 175°C
TJ = 25°C
TJ = -40°C
100
100µsec
10
10msec
1
DC
0.1
TA = 25°C
Tj = 175°C
Single Pulse
0.0
0.1
1.0
10.0
100.0
10
1
VGS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
VSD , Source-to-Drain Voltage (V)
0.01
VDS , Drain-toSource Voltage (V)
Fig 10.
Typical Source-Drain Diode Forward Voltage
40
VGS(th) Gate threshold Voltage (V)
3.0
Fig 11.
Maximum Safe Operating Area
ID, Drain Current (A)
30
2.5
20
2.0
ID = 1.0A
ID = 1.0mA
ID = 25µA
10
1.5
ID = 250µA
0
25
50
75
100
125
150
175
TC , Case Temperature (°C)
1.0
-75 -50 -25
0
25
50
75
100 125 150 175
TJ , Temperature ( °C )
Fig 12.
Maximum Drain Current vs. Case Temperature
EAS, Single Pulse Avalanche Energy (mJ)
Fig 13.
Typical Threshold Voltage vs. Junction
Temperature
100
700
Gfs, Forward Transconductance (S)
600
500
400
300
200
100
0
0
20
40
60
80
100
120
140
ID, Drain-to-Source Current (A)
VDS = 10V
TJ = 25°C
TJ = 175°C
80
I D
TOP
1.8A
3.8A
BOTTOM
10A
60
40
20
380µs PULSE WIDTH
0
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 14.
Typ. Forward Transconductance vs. Drain Current
Fig 15.
Maximum Avalanche Energy vs. Drain Current
www.irf.com
5