IRFH7110PbF
HEXFET
®
Power MOSFET
V
DS
V
gs max
R
DS(on) max
(@V
GS
= 10V)
100
± 20
13.5
58
0.6
50
V
V
mΩ
nC
Ω
A
PQFN 5X6 mm
Q
G (typical)
R
G (typical)
I
D
(@T
c(Bottom)
= 25°C)
i
Applications
•
•
•
•
Secondary Side Synchronous Rectification
Inverters for DC Motors
DC-DC Brick Applications
Boost Converters
Features and Benefits
Features
Low RDSon (< 13.5mW)
Low Thermal Resistance to PCB (< 1.2°C/W)
Low Profile (<0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
IRFH7110TRPBF
IRFH7110TR2PBF
Package Type
PQFN 5mm x 6mm
PQFN 5mm x 6mm
Benefits
Lower Conduction Losses
Enables better thermal dissipation
results in Increased Power Density
⇒
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Note
Form
Tape and Reel
Tape and Reel
Quantity
4000
400
EOL notice # 259
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
D
@ T
C(Bottom)
= 25°C
I
D
@ T
C(Bottom)
= 100°C
I
D
@ T
C
= 25°C
I
DM
P
D
@T
A
= 25°C
P
D
@T
C(Bottom)
= 25°C
T
J
T
STG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V (Package Limited)
Pulsed Drain Current
Power Dissipation
Power Dissipation
Max.
100
± 20
11
8.6
58
37
50
240
3.6
104
0.029
-55 to + 150
Units
V
g
g
c
hi
h
i
A
W
W/°C
°C
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
Notes
through
are on page 9
1
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
May 13, 2014
IRFH7110PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
ΔΒV
DSS
/ΔT
J
R
DS(on)
V
GS(th)
ΔV
GS(th)
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
R
G
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Parameter
Single Pulse Avalanche Energy
Avalanche Current
Min.
100
–––
–––
2.0
–––
–––
–––
–––
–––
74
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.09
10.6
3.0
-9.0
–––
–––
–––
–––
–––
58
11
3.6
16
27.4
19.6
17
0.6
11
23
22
18
3240
300
140
Max. Units
–––
–––
13.5
4.0
–––
20
250
100
-100
–––
87
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
Conditions
V
GS
= 0V, I
D
= 250μA
V
V/°C Reference to 25°C, I
D
= 1.0mA
mΩ V
GS
= 10V, I
D
= 35A
V
V
DS
= V
GS
, I
D
= 100μA
mV/°C
V
DS
= 100V, V
GS
= 0V
μA
V
DS
= 100V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
nA
V
GS
= -20V
V
DS
= 25V, I
D
= 35A
S
e
nC
V
DS
= 50V
V
GS
= 10V
I
D
= 35A
nC
Ω
ns
V
DS
= 16V, V
GS
= 0V
V
DD
= 50V, V
GS
= 10V
I
D
= 35A
R
G
=1.8Ω
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
Max.
110
35
Units
mJ
A
pF
Avalanche Characteristics
E
AS
I
AR
d
Min.
–––
–––
–––
–––
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Typ.
–––
–––
–––
27
Max. Units
50
Conditions
MOSFET symbol
D
i
A
Ã
240
1.3
41
V
ns
showing the
integral reverse
G
S
p-n junction diode.
T
J
= 25°C, I
S
= 35A, V
GS
= 0V
T
J
= 25°C, I
F
= 35A, V
DD
= 50V
e
–––
140
210
nC di/dt = 500A/μs
Time is dominated by parasitic Inductance
eÃ
Thermal Resistance
R
θJC
(Bottom)
R
θJC
(Top)
R
θJA
R
θJA
(<10s)
Junction-to-Case
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient
f
f
Parameter
fg
g
Typ.
–––
–––
–––
–––
Max.
1.2
32
35
22
Units
°C/W
2
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
May 13, 2014
IRFH7110PbF
1000
TOP
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
VGS
10V
6.0V
5.5V
5.0V
4.8V
4.5V
4.3V
4.0V
TOP
100
BOTTOM
VGS
10V
6.0V
5.5V
5.0V
4.8V
4.5V
4.3V
4.0V
10
10
4.0V
1
4.0V
≤
60μs PULSE WIDTH
Tj = 25°C
≤
60μs PULSE WIDTH
Tj = 150°C
1
0.1
1
10
100
0.1
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
1000
2.5
Fig 2.
Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 35A
VGS = 10V
2.0
ID, Drain-to-Source Current (A)
100
TJ = 150°C
10
1.5
TJ = 25°C
1
1.0
VDS = 50V
≤
60μs PULSE WIDTH
0.1
2.0
3.0
4.0
5.0
6.0
7.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
100000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Fig 4.
Normalized On-Resistance vs. Temperature
16
VGS, Gate-to-Source Voltage (V)
ID= 35A
12
VDS= 80V
VDS= 50V
VDS= 20V
8
C, Capacitance (pF)
10000
Ciss
1000
Coss
100
Crss
4
10
1
10
100
0
0
20
40
60
80
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 5.
Typical Capacitance vs. Drain-to-Source Voltage
3
www.irf.com
©
2014 International Rectifier
Fig 6.
Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
May 13, 2014
IRFH7110PbF
1000
1000
ISD, Reverse Drain Current (A)
100
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100
100μsec
TJ = 150°C
10
10
L
imited by Package
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
0.1
1
10
DC
10msec
1msec
1
TJ = 25°C
VGS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
100
1000
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode Forward Voltage
60
LIMITED BY PACKAGE
50
ID, Drain Current (A)
4.5
Fig 8.
Maximum Safe Operating Area
VGS(th) Gate threshold Voltage (V)
4.0
40
30
20
10
0
25
50
75
100
125
150
TC, Case Temperature (°C)
3.5
3.0
ID = 100μA
ID = 250μA
ID = 1.0mA
ID = 1.0A
2.5
2.0
1.5
-75
-50
-25
0
25
50
75
100
125
150
TJ , Temperature ( °C )
Fig 9.
Maximum Drain Current vs.
Case (Bottom) Temperature
10
Thermal Response ( ZthJC ) °C/W
Fig 10.
Threshold Voltage vs. Temperature
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
0.001
1E-006
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
May 13, 2014
IRFH7110PbF
(
RDS (on), Drain-to -Source On Resistance m
Ω)
40
500
ID = 35A
30
EAS, Single Pulse Avalanche Energy (mJ)
400
I D
TOP
4.7A
9.6A
BOTTOM
35A
300
20
TJ = 125°C
200
10
TJ = 25°C
0
4
8
12
16
20
100
0
25
50
75
100
125
150
VGS, Gate-to-Source Voltage (V)
Starting TJ , Junction Temperature (°C)
Fig 12.
On-Resistance vs. Gate Voltage
Fig 13.
Maximum Avalanche Energy vs. Drain Current
V
(BR)DSS
15V
tp
VDS
L
DRIVER
RG
20V
D.U.T
IAS
tp
+
V
- DD
A
I
AS
0.01
Ω
Fig 14a.
Unclamped Inductive Test Circuit
Fig 14b.
Unclamped Inductive Waveforms
V
DS
V
GS
R
G
V10V
GS
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1
R
D
90%
D.U.T.
+
V
DS
-
V
DD
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 15a.
Switching Time Test Circuit
Fig 15b.
Switching Time Waveforms
5
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
May 13, 2014