PD - 97201B
PDP SWITCH
Features
l
Advanced Process Technology
l
Key Parameters Optimized for PDP Sustain,
Energy Recovery and Pass Switch Applications
l
Low E
PULSE
Rating to Reduce Power
Dissipation in PDP Sustain, Energy Recovery
and Pass Switch Applications
l
Low Q
G
for Fast Response
l
High Repetitive Peak Current Capability for
Reliable Operation
l
Short Fall & Rise Times for Fast Switching
l
150°C Operating Junction Temperature for
Improved Ruggedness
l
Repetitive Avalanche Capability for Robustness
and Reliability
IRFI4229PbF
Key Parameters
250
300
38
32
150
D
V
DS
max
V
DS (Avalanche)
typ.
R
DS(ON)
typ. @ 10V
I
RP
max @ T
C
= 100°C
T
J
max
D
V
V
m
:
A
°C
G
G
S
D
S
TO-220AB Full-Pak
D
S
G
Gate
Drain
Source
Description
This
HEXFET
®
Power MOSFET
is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This
MOSFET
utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low E
PULSE
rating. Additional features of this
MOSFET
are 150°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this
MOSFET
a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Parameter
V
GS
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
I
RP
@ T
C
= 100°C
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Max.
±30
19
12
72
32
46
18
0.37
-40 to + 150
300
10lb in (1.1N m)
Units
V
A
c
Repetitive Peak Current
Power Dissipation
Power Dissipation
Linear Derating Factor
g
W
W/°C
°C
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
x
N
Units
°C/W
Thermal Resistance
R
θJC
R
θJA
Junction-to-Case
Junction-to-Ambient
f
Parameter
f
Typ.
–––
–––
Max.
2.73
65
Notes
through
are on page 8
www.irf.com
1
03/27/08
IRFI4229PbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
∆V
GS(th)
/∆T
J
I
DSS
I
GSS
g
fs
Q
g
Q
gd
t
d(on)
t
r
t
d(off)
t
f
t
st
E
PULSE
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Drain Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Shoot Through Blocking Time
Energy per Pulse
Min.
250
–––
–––
3.0
–––
–––
–––
–––
–––
26
–––
–––
–––
–––
–––
–––
100
–––
–––
Typ. Max. Units
–––
340
38
–––
-12
–––
–––
–––
–––
–––
73
24
18
17
32
13
–––
770
1380
4480
400
100
270
4.5
7.5
–––
–––
46
5.0
–––
20
200
100
-100
–––
110
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
nH
–––
pF
ns
µJ
ns
I
D
= 11A
R
G
= 2.4Ω
See Fig. 22
S
nC
nA
V
Conditions
V
GS
= 0V, I
D
= 250µA
mV/°C Reference to 25°C, I
D
= 1mA
mΩ V
GS
= 10V, I
D
= 11A
e
V
mV/°C
µA
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 250V, V
GS
= 0V
V
DS
= 250V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
V
DS
= 25V, I
D
= 11A
V
DD
= 125V, I
D
= 11A, V
GS
= 10V
V
DD
= 125V, V
GS
= 10V
e
Ãe
V
DD
= 200V, V
GS
= 15V, R
G
= 5.1Ω
L = 220nH, C= 0.3µF, V
GS
= 15V
V
DS
= 200V, R
G
= 5.1Ω, T
J
= 25°C
L = 220nH, C= 0.3µF, V
GS
= 15V
V
DS
= 200V, R
G
= 5.1Ω, T
J
= 100°C
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz,
V
GS
= 0V, V
DS
= 0V to 200V
Between lead,
6mm (0.25in.)
from package
and center of die contact
G
S
D
C
iss
C
oss
C
rss
C
oss
eff.
L
D
L
S
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance
Internal Drain Inductance
Internal Source Inductance
–––
–––
–––
–––
–––
–––
Avalanche Characteristics
E
AS
E
AR
V
DS(Avalanche)
I
AS
d
Repetitive Avalanche Energy
Repetitive Avalanche Voltage
Ã
Avalanche Current
Ãd
Single Pulse Avalanche Energy
Parameter
Typ.
Max.
Units
mJ
mJ
V
A
–––
–––
300
–––
110
4.6
–––
11
Diode Characteristics
Parameter
I
S
@ T
C
= 25°C Continuous Source Current
(Body Diode)
I
SM
V
SD
t
rr
Q
rr
Pulsed Source Current
(Body Diode)
Min.
–––
–––
–––
–––
–––
Typ. Max. Units
–––
–––
–––
120
540
18
A
72
1.3
180
810
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 11A, V
GS
= 0V
di/dt = 100A/µs
Ã
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
e
T
J
= 25°C, I
F
= 11A, V
DD
= 50V
e
2
www.irf.com
IRFI4229PbF
1000
TOP
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
1000
TOP
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
100
BOTTOM
10
BOTTOM
10
5.0V
1
1
0.1
5.0V
≤
60µs PULSE WIDTH
Tj = 25°C
0.01
0.1
1
10
100
V DS, Drain-to-Source Voltage (V)
0.1
0.1
1
≤
60µs PULSE WIDTH
Tj = 150°C
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
100
VDS = 25V
≤60µs
PULSE WIDTH
Fig 2.
Typical Output Characteristics
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
2.5
ID = 11A
VGS = 10V
10
2.0
1.5
1
T J = 150°C
T J = 25°C
1.0
0.5
0.1
3
4
5
6
7
0.0
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3.
Typical Transfer Characteristics
1400
L = 220nH
C = 0.3µF
100°C
25°C
Fig 4.
Normalized On-Resistance vs. Temperature
1400
1200
L = 220nH
C = variable
100°C
25°C
1200
Energy per Pulse (µJ)
1000
Energy per Pulse (µJ)
170
180
190
200
210
1000
800
600
400
200
0
800
600
400
200
140
150
160
100
110
120
130
140
150
160
170
VDS, Drain-to-Source Voltage (V)
ID, Peak Drain Current (A)
Fig 5.
Typical E
PULSE
vs. Drain-to-Source Voltage
Fig 6.
Typical E
PULSE
vs. Drain Current
www.irf.com
3
IRFI4229PbF
1800
1600
1400
Energy per Pulse (µJ)
100
L = 220nH
C = 0.3µF
ISD, Reverse Drain Current (A)
TJ = 150°C
10
1200
1000
C = 0.2µF
800
600
400
200
0
20
40
60
80
100
120
140
160
C = 0.1µF
1
T J = 25°C
VGS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
VSD, Source-to-Drain Voltage (V)
Temperature (°C)
Fig 7.
Typical E
PULSE
vs.Temperature
7000
6000
C, Capacitance (pF)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Fig 8.
Typical Source-Drain Diode Forward Voltage
12.0
ID= 11A
VGS, Gate-to-Source Voltage (V)
10.0
VDS= 200V
VDS= 125V
VDS= 50V
5000
4000
3000
2000
1000
0
1
Ciss
8.0
6.0
Coss
4.0
2.0
Crss
0.0
10
100
1000
0
10
20
30
40
50
60
70
80
VDS, Drain-to-Source Voltage (V)
QG, Total Gate Charge (nC)
Fig 9.
Typical Capacitance vs.Drain-to-Source Voltage
20
18
16
ID, Drain Current (A)
Fig 10.
Typical Gate Charge vs.Gate-to-Source Voltage
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
10
1msec
1
10msec
ID, Drain-to-Source Current (A)
100
14
12
10
8
6
4
2
0
25
50
75
100
125
150
T C , Case Temperature (°C)
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
1
10
100
1000
0.01
VDS, Drain-to-Source Voltage (V)
Fig 11.
Maximum Drain Current vs. Case Temperature
Fig 12.
Maximum Safe Operating Area
4
www.irf.com
IRFI4229PbF
RDS(on), Drain-to -Source On Resistance (m
Ω)
200
180
160
140
120
100
80
60
40
20
0
5
6
7
8
9
10
T J = 25°C
T J = 125°C
ID = 11A
EAS , Single Pulse Avalanche Energy (mJ)
450
400
350
300
250
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
ID
TOP
2.3A
2.7A
BOTTOM 11A
VGS, Gate -to -Source Voltage (V)
Fig 13.
On-Resistance vs. Gate Voltage
5.0
VGS(th) , Gate Threshold Voltage (V)
Fig 14.
Maximum Avalanche Energy vs. Temperature
60
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
50
Repetitive Peak Current (A)
4.0
ID = 250µA
40
30
3.0
20
10
2.0
-75 -50 -25
0
25
50
75 100 125 150
T J , Temperature ( °C )
0
25
50
75
100
125
150
Case Temperature (°C)
Fig 15.
Threshold Voltage vs. Temperature
10
Fig 16.
Typical Repetitive peak Current vs.
Case temperature
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
3
τ
C
τ
τ
3
0.1
τ
J
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W)
τi
(sec)
0.3671 0.000287
1.0580
1.3076
0.162897
2.426
τ
1
τ
2
0.001
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
0.0001
0.001
0.01
0.1
1
10
100
0.0001
1E-006
t1 , Rectangular Pulse Duration (sec)
Fig 17.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5