IRFR/U5410
l
l
l
l
l
l
l
Ultra Low On-Resistance
P-Channel
Surface Mount (IRFR5410)
Straight Lead (IRFU5410)
Advanced Process Technology
Fast Switching
Fully Avalanche Rated
HEXFET
®
Power MOSFET
D
V
DSS
= -100V
R
DS(on)
= 0.205W
G
S
I
D
= -13A
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The D-Pak is designed for surface mounting using vapor
phase, infrared, or wave soldering techniques. The straight
lead version (IRFU series) is for through-hole mounting
applications. Power dissipation levels up to 1.5 watts are
possible in typical surface mount applications.
D-Pak
TO-252AA
I-Pak
TO-251AA
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ -10V
Continuous Drain Current, V
GS
@ -10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
-13
-8.2
-52
66
0.53
± 20
194
-8.4
6.3
-5.0
-55 to + 150
300 (1.6mm from case )
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
R
qJC
R
qJA
R
qJA
Junction-to-Case
Junction-to-Ambient (PCB mount)**
Junction-to-Ambient
Typ.
Max.
1.9
50
110
Units
°C/W
1 / 10
www.kersemi.com
IRFR/U5410
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
Drain-to-Source Breakdown Voltage
DV
(BR)DSS
/DT
J
Breakdown Voltage Temp. Coefficient
R
DS(on)
Static Drain-to-Source On-Resistance
V
GS(th)
Gate Threshold Voltage
g
fs
Forward Transconductance
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
-100
-2.0
3.2
Typ.
-0.12
15
58
45
46
4.5
7.5
760
260
170
Max. Units
Conditions
V
V
GS
= 0V, I
D
= -250µA
V/°C Reference to 25°C, I
D
= -1.0mA
0.205
W
V
GS
= -10V, I
D
= -7.8A
-4.0
V
V
DS
= V
GS
, I
D
= -250µA
S
V
DS
= -50V, I
D
= -7.8A
-25
V
DS
= -100V, V
GS
= 0V
µA
-250
V
DS
= -80V, V
GS
= 0V, T
J
= 150°C
100
V
GS
= 20V
nA
-100
V
GS
= -20V
58
I
D
= -8.4A
8.3
nC
V
DS
= -80V
32
V
GS
= -10V, See Fig. 6 and 13
V
DD
= 50V
I
D
= -8.4A
ns
R
G
= 9.1W
R
D
=6.2W, See Fig. 10
D
Between lead,
6mm (0.25in.)
nH
G
from package
and center of die contact
S
V
GS
= 0V
pF
V
DS
= -25V
= 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
-13
showing the
A
G
integral reverse
-52
p-n junction diode.
S
-1.6
V
T
J
= 25°C, I
S
= -7.8A, V
GS
= 0V
130 190
ns
T
J
= 25°C, I
F
= -8.4A
650 970
nC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Starting T
J
= 25°C, L = 6.4mH
R
G
= 25W, I
AS
= -7.8A. (See Figure 12)
I
SD
£
-7.8A, di/dt
£
200A/µs, V
DD
£
V
(BR)DSS
,
T
J
£
150°C
Pulse width
£
300µs; duty cycle
£
2%.
This is applied for I-PAK, L
S
of D-PAK is measured between
lead and center of die contact
Uses IRF9530N data and test conditions.
2 / 10
www.kersemi.com
IRFR/U5410
100
-I
D
, Drain-to-Source Current (A)
10
-I
D
, Drain-to-Source Current (A)
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
BOTTOM -4.5V
TOP
100
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
BOTTOM -4.5V
TOP
10
1
-4.5V
0.1
1
-4.5V
0.01
0.1
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
0.1
0.1
20µs PULSE WIDTH
T
J
= 150
°
C
1
10
100
-V
DS
, Drain-to-Source Voltage (V)
-V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
2.5
-I
D
, Drain-to-Source Current (A)
T
J
= 25
°
C
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
= -14A
2.0
10
T
J
= 150
°
C
1.5
1.0
1
0.5
0.1
4
5
6
7
V DS = 10V
20µs PULSE WIDTH
8
9
10
0.0
-60 -40 -20
V
GS
= -10V
0
20
40
60
80 100 120 140 160
-V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
3 / 10
www.kersemi.com
IRFR/U5410
2000
1600
-V
GS
, Gate-to-Source Voltage (V)
V
GS
= 0V,
f = 1MHz
C
iss
= C
gs
+ C
gd
, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
20
I
D
= -8.4A
V
DS
=-80V
V
DS
=-50V
V
DS
=-20V
C, Capacitance (pF)
15
1200
C
iss
10
800
C
oss
C
rss
5
400
0
1
10
100
A
0
0
10
20
30
FOR TEST CIRCUIT
SEE FIGURE 13
40
50
60
-V
DS
, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
-I
SD
, Reverse Drain Current (A)
T
J
= 150
°
C
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
10
-I
D
, Drain Current (A)
I
100
10us
T
J
= 25
°
C
1
10
100us
0.1
0.2
V
GS
= 0 V
0.8
1.4
2.0
2.6
1
1
T
C
= 25° C
T
J
= 150° C
Single Pulse
10
1ms
10ms
100
1000
-V
SD
,Source-to-Drain Voltage (V)
-V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4 / 10
www.kersemi.com
IRFR/U5410
15
V
DS
V
GS
R
D
12
-I
D
, Drain Current (A)
9
-10V
Pulse Width
£ 1
µs
Duty Factor
£ 0.1 %
6
Fig 10a.
Switching Time Test Circuit
3
t
d(on)
t
r
t
d(off)
t
f
V
GS
0
25
50
75
100
125
150
10%
T
C
, Case Temperature ( °C)
90%
V
DS
Fig 9.
Maximum Drain Current Vs.
Case Temperature
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
1 D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
P
DM
t
1
t
2
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
1
0.01
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
5 / 10
www.kersemi.com
+
-
R
G
D.U.T.
V
DD