PD - 95511B
IRFR3505PbF
IRFU3505PbF
l
l
l
l
l
l
Features
HEXFET
®
Power MOSFET
D
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
V
DSS
= 55V
R
DS(on)
= 0.013Ω
G
S
I
D
= 30A
Description
This HEXFET
®
Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per
silicon area. Additional features of this product are a 175°C
junction operating temperature, fast switching speed and
improved repetitive avalanche rating. These features
combine to make this design an extremely efficient and
reliable device for use in a wide variety of applications.
The D-Pak is designed for surface mounting using vapor
phase, infrared, or wave soldering techniques. The straight
lead version (IRFU series) is for through-hole mounting
applications. Power dissipation levels up to 1.5 watts are
possible in typical surface mount applications.
D-Pak
IRFR3505PbF
I-Pak
IRFU3505PbF
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
D
@ T
C
= 25°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
E
AS
(tested)
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V (Silicon limited)
Continuous Drain Current, V
GS
@ 10V (See Fig.9)
Continuous Drain Current, V
GS
@ 10V (Package limited)
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
71
49
30
280
140
0.92
± 20
210
410
See Fig.12a, 12b, 15, 16
4.0
-55 to + 175
300 (1.6mm from case )
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
Typ.
–––
–––
–––
Max.
1.09
40
110
Units
°C/W
www.irf.com
1
09/27/10
IRFR/U3505PbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
55
–––
–––
2.0
41
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.057
0.011
–––
–––
–––
–––
–––
–––
62
17
22
13
74
43
54
4.5
7.5
2030
470
91
2600
330
630
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
0.013
Ω
V
GS
= 10V, I
D
= 30A
4.0
V
V
DS
= 10V, I
D
= 250µA
–––
S
V
DS
= 25V, I
D
= 30A
20
V
DS
= 55V, V
GS
= 0V
µA
250
V
DS
= 55V, V
GS
= 0V, T
J
= 125°C
200
V
GS
= 20V
nA
-200
V
GS
= -20V
93
I
D
= 30A
26
nC V
DS
= 44V
33
V
GS
= 10V
–––
V
DD
= 28V
–––
I
D
= 30A
ns
–––
R
G
= 6.8Ω
–––
V
GS
= 10V
D
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
S
–––
V
GS
= 0V
–––
pF
V
DS
= 25V
–––
ƒ = 1.0MHz, See Fig. 5
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 44V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 44V
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
71
––– –––
showing the
A
G
integral reverse
––– ––– 280
S
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 30A, V
GS
= 0V
––– 70 105
ns
T
J
= 25°C, I
F
= 30A, V
DD
= 28V
––– 180 270
nC
di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Notes
through
are on page 11
2
www.irf.com
IRFR/U3505PbF
1000
TOP
V
GS
1000
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
V
GS
4.5V
10
10
4.5V
20µs PULSE WIDTH
Tj = 25°C
0.1
1
10
100
1
1
0.1
1
20µs PULSE WIDTH
Tj = 175°C
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
70
G fs , Forward Transconductance (S)
ID, Drain-to-Source Current
(Α
)
T J = 25°C
100
60
50
40
30
20
10
0
0
10
20
T J = 25°C
T J = 175°C
T J = 175°C
10
VDS = 25V
1
4.0
5.0
6.0
20µs PULSE WIDTH
7.0
8.0
9.0
10.0
VDS = 25V
20µs PULSE WIDTH
30
40
50
60
70
80
90
VGS , Gate-to-Source Voltage (V)
ID,Drain-to-Source Current (A)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Typical Forward Transconductance
Vs. Drain Current
www.irf.com
3
IRFR/U3505PbF
4000
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, Cds SHORTED
gs
Crss = C
gd
Coss
= Cds + Cgd
20
ID= 30A
VGS , Gate-to-Source Voltage (V)
16
3000
C, Capacitance (pF)
VDS= 44V
VDS= 28V
VDS= 11V
12
2000
Ciss
8
1000
Coss
4
Crss
0
1
10
100
0
0
20
40
60
80
100
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
1000.0
1000
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100.0
T J = 175°C
10.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
100µsec
10
Tc = 25°C
Tj = 175°C
Single Pulse
1
10
1.0
T J = 25°C
VGS = 0V
1msec
10msec
100
1000
0.1
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-toDrain Voltage (V)
1
VDS , Drain-toSource Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFR/U3505PbF
80
2.5
ID , Drain Current (A)
60
RDS(on) , Drain-to-Source On Resistance
LIMITED BY PACKAGE
ID = 30A
VGS = 10V
2.0
40
(Normalized)
1.5
20
1.0
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
0.5
-60 -40 -20
0
20
40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature
Fig 10.
Normalized On-Resistance
Vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.01
0.1
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5