PD - 93894A
SMPS MOSFET
IRFB23N15D
IRFS23N15D
IRFSL23N15D
HEXFET
®
Power MOSFET
Applications
l
High frequency DC-DC converters
V
DSS
150V
R
DS(on)
max
0.090Ω
I
D
23A
Benefits
l
Low Gate-to-Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
TO-220AB
l
Fully Characterized Avalanche Voltage
IRFB23N15D
and Current
D
2
Pak
IRFS23N15D
TO-262
IRFSL23N15D
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
A
= 25°C
P
D
@T
C
= 25°C
V
GS
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
Max.
23
17
92
3.8
136
0.9
± 30
4.1
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Units
A
W
W/°C
V
V/ns
°C
Typical SMPS Topologies
l
Telecom 48V input DC-DC Active Clamp Reset Forward Converter
Notes
through
are on page 11
www.irf.com
1
6/29/00
IRFB/IRFS/IRFSL23N15D
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
Drain-to-Source Breakdown Voltage
∆V
(BR)DSS
/∆T
J
Breakdown Voltage Temp. Coefficient
R
DS(on)
Static Drain-to-Source On-Resistance
V
GS(th)
Gate Threshold Voltage
I
DSS
I
GSS
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
150
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.18
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
0.090
Ω
V
GS
= 10V, I
D
= 14A
5.5
V
V
DS
= V
GS
, I
D
= 250µA
25
V
DS
= 150V, V
GS
= 0V
µA
250
V
DS
= 120V, V
GS
= 0V, T
J
= 150°C
100
V
GS
= 30V
nA
-100
V
GS
= -30V
Dynamic @ T
J
= 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
11
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
37
9.6
19
10
32
18
8.4
1200
260
65
1520
120
210
Max. Units
Conditions
–––
S
V
DS
= 25V, I
D
= 14A
56
I
D
= 14A
14
nC V
DS
= 120V
29
V
GS
= 10V,
–––
V
DD
= 75V
–––
I
D
= 14A
ns
–––
R
G
= 5.1Ω
–––
V
GS
= 10V
–––
V
GS
= 0V
–––
V
DS
= 25V
–––
pF
ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 120V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 120V
Avalanche Characteristics
Parameter
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Typ.
–––
–––
–––
Max.
260
14
13.6
Units
mJ
A
mJ
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Junction-to-Ambient
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Typ.
–––
0.50
–––
–––
Max.
1.1
–––
62
40
Units
°C/W
Diode Characteristics
Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Conditions
D
MOSFET symbol
23
––– –––
showing the
A
G
integral reverse
––– ––– 92
S
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 14A, V
GS
= 0V
––– 150 220
ns
T
J
= 25°C, I
F
= 14A
––– 0.8 1.2
µC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
2
www.irf.com
IRFB/IRFS/IRFSL23N15D
100
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
TOP
100
I
D
, Drain-to-Source Current (A)
10
1
I
D
, Drain-to-Source Current (A)
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
TOP
10
5.0V
0.1
5.0V
20µs PULSE WIDTH
T
J
= 175
°
C
1
10
100
0.01
0.1
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
1
0.1
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
3.5
I
D
= 23A
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
, Drain-to-Source Current (A)
3.0
T
J
= 175
°
C
10
2.5
2.0
T
J
= 25
°
C
1
1.5
1.0
0.5
0.1
4
5
6
7
8
V DS = 50V
20µs PULSE WIDTH
9
10
11
12
0.0
-60 -40 -20
V
GS
= 10V
0
20 40 60 80 100 120 140 160 180
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRFB/IRFS/IRFSL23N15D
10000
20
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, C
gs
ds SHORTED
Crss = C
gd
Coss = C + Cgd
ds
I
D
= 14A
V
DS
= 120V
V
DS
= 75V
V
DS
= 30V
V
GS
, Gate-to-Source Voltage (V)
16
C, Capacitance(pF)
1000
Ciss
12
Coss
100
8
Crss
4
10
1
10
100
1000
0
0
10
20
30
FOR TEST CIRCUIT
SEE FIGURE 13
40
50
60
VDS , Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
I
SD
, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
10
I
D
, Drain Current (A)
100
10us
T
J
= 175
°
C
T
J
= 25
°
C
1
100us
10
1ms
0.1
0.2
V
GS
= 0 V
0.4
0.6
0.8
1.0
1.2
1.4
1
1
T
C
= 25 ° C
T
J
= 175 ° C
Single Pulse
10
100
10ms
1000
V
SD
,Source-to-Drain Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFB/IRFS/IRFSL23N15D
25
V
DS
V
GS
R
D
20
D.U.T.
+
R
G
I
D
, Drain Current (A)
-
V
DD
15
10V
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
10
Fig 10a.
Switching Time Test Circuit
5
V
DS
90%
0
25
50
75
100
125
150
175
T
C
, Case Temperature ( ° C)
10%
V
GS
Fig 9.
Maximum Drain Current Vs.
Case Temperature
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
1
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
P
DM
t
1
t
2
0.01
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5