首页 > 器件类别 > 半导体 > 分立半导体

IRG7SC28UTRLPBF

IGBT Transistors 600V 40A IGBT 1.70V 225A

器件类别:半导体    分立半导体   

厂商名称:Infineon(英飞凌)

厂商官网:http://www.infineon.com/

器件标准:

下载文档
IRG7SC28UTRLPBF 在线购买

供应商:

器件:IRG7SC28UTRLPBF

价格:-

最低购买:-

库存:点击查看

点击购买

器件参数
参数名称
属性值
Product Attribute
Attribute Value
制造商
Manufacturer
Infineon(英飞凌)
产品种类
Product Category
IGBT Transistors
RoHS
Details
技术
Technology
Si
系列
Packaging
Cut Tape
系列
Packaging
MouseReel
系列
Packaging
Reel
工厂包装数量
Factory Pack Quantity
800
文档预览
PD - 97569A
PDP TRENCH IGBT
IRG7SC28UPbF
Features
l
Advanced Trench IGBT Technology
l
Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM
)
l
Low V
CE(on)
and Energy per Pulse (E
PULSE
for improved panel efficiency
l
High repetitive peak current capability
l
Lead Free package
Key Parameters
V
CE
min
V
CE(ON)
typ. @ I
C
= 40A
I
RP
max @ T
C
= 25°C
T
J
max
c
600
1.70
225
150
V
V
A
°C
C
C
G
E
G
C
E
n-channel
G
Gate
C
Collector
D
2
Pak
IRG7SC28UPbF
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low V
CE(on)
and low E
PULSETM
rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
V
GE
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
RP
@ T
C
= 25°C
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Gate-to-Emitter Voltage
Continuous Collector Current, V
GE
@ 15V
Continuous Collector, V
GE
@ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
Max.
±30
60
30
225
171
68
1.37
-40 to + 150
300
Units
V
A
c
W
W/°C
°C
10lb in (1.1N m)
x
x
N
Thermal Resistance
R
θJC
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
d
Parameter
Typ.
Max.
0.73
40
Units
°C/W
d
–––
–––
www.irf.com
1
07/11/11
IRG7SC28UPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
CES
V
(BR)ECS
ΔΒV
CES
/ΔT
J
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Min. Typ. Max. Units
Conditions
V
GE
= 0V, I
CE
= 1.0mA
e
600
15
–––
–––
–––
–––
–––
0.57
1.25
1.42
1.70
1.96
2.97
1.75
–––
-11
0.5
30
90
305
–––
–––
55
70
25
30
35
260
145
25
40
280
320
–––
770
930
–––
–––
–––
–––
–––
1.95
–––
–––
–––
V
GE
= 0V, I
CE
= 1.0A
V/°C Reference to 25°C, I
CE
= 1.0mA
V
GE
= 15V, I
CE
= 12A
V
GE
= 15V, I
CE
= 24A
V
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
V
V
CE(on)
Static Collector-to-Emitter Voltage
–––
–––
–––
V
GE(th)
ΔV
GE(th)
/ΔT
J
I
CES
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
2.2
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
100
–––
–––
4.7
V
––– mV/°C
20
–––
–––
100
-100
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
ns
μJ
ns
ns
μA
V
GE
= 15V, I
CE
= 40A, T
J
= 150°C
V
CE
= V
GE
, I
CE
= 250μA
V
CE
= 600V, V
GE
= 0V
e
e
= 40A
e
= 70A
e
= 160A
e
e
V
CE
= 600V, V
GE
= 0V, T
J
= 100°C
V
CE
= 600V, V
GE
= 0V, T
J
= 125°C
V
CE
= 600V, V
GE
= 0V, T
J
= 150°C
I
GES
g
fe
Q
g
Q
gc
t
d(on)
t
r
t
d(off)
t
f
t
d(on)
t
r
t
d(off)
t
f
t
st
E
PULSE
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Shoot Through Blocking Time
Energy per Pulse
nA
S
nC
V
GE
= 30V
V
GE
= -30V
V
CE
= 25V, I
CE
= 40A
V
CE
= 400V, I
C
= 40A, V
GE
= 15V
I
C
= 40A, V
CC
= 400V
R
G
= 22Ω, L=100μH
T
J
= 25°C
I
C
= 40A, V
CC
= 400V
R
G
= 22Ω, L=100μH
T
J
= 150°C
V
CC
= 240V, V
GE
= 15V, R
G
= 5.1Ω
L = 220nH, C= 0.40μF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 25°C
L = 220nH, C= 0.40μF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 100°C
e
Human Body Model
ESD
Machine Model
C
ies
C
oes
C
res
L
C
L
E
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
Internal Emitter Inductance
–––
–––
–––
–––
–––
Class H1C (2000V)
(Per JEDEC standard JESD22-A114)
Class M4 (425V)
(Per EIA/JEDEC standard EIA/JESD22-A115)
V
GE
= 0V
1880 –––
75
–––
pF V
CE
= 30V
45
4.5
7.5
–––
–––
nH
–––
ƒ = 1.0MHz
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:

Half sine wave with duty cycle <= 0.02, ton=1.0μsec.
‚
R
θ
is measured at
T
J
of approximately 90°C.
ƒ
Pulse width
400μs; duty cycle
2%.
2
www.irf.com
IRG7SC28UPbF
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
100
75
50
25
0
0
2
4
6
ICE (A)
10
100
75
50
25
0
8
0
2
4
6
8
10
VCE (V)
VCE (V)
Fig 1.
Typical Output Characteristics @ 25°C
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
Fig 2.
Typical Output Characteristics @ 75°C
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
100
75
50
25
0
0
2
4
6
8
ICE (A)
14
100
75
50
25
0
10
12
0
2
4
6
8
10
12
14
VCE (V)
VCE (V)
Fig 3.
Typical Output Characteristics @ 125°C
200
175
150
125
100
75
50
25
0
2
4
6
8
10
VGE, Gate-to-Emitter Voltage (V)
T J = 25°C
Fig 4.
Typical Output Characteristics @ 150°C
2.0
T J = 150°C
VCE, Voltage Collector-to-Emitter (V)
ICE, Collector-to-Emitter Current (A)
IC = 20A
1.8
1.6
T J = 25°C
T J = 150°C
1.4
1.2
0
5
10
15
20
VGE, Voltage Gate-to-Emitter (V)
Fig 5.
Typical Transfer Characteristics
Fig 6.
V
CE(ON)
vs. Gate Voltage
www.irf.com
3
IRG7SC28UPbF
60
50
40
Repetitive Peak Current (A)
250
200
150
IC (A)
30
20
10
0
25
50
75
100
125
150
100
ton= 2μs
Duty cycle <= 0.05
Half Sine Wave
50
0
25
50
75
100
125
150
Case Temperature (°C)
Fig 7.
Maximum Collector Current vs. Case Temperature
950
900
850
V CC = 240V
L = 220nH
C = variable
100°C
T C (°C)
Fig 8.
Typical Repetitive Peak Current vs. Case Temperature
950
900
850
L = 220nH
C = 0.4μF
100°C
Energy per Pulse (μJ)
Energy per Pulse (μJ)
800
750
700
650
600
550
500
450
160 170 180 190 200 210 220 230 240
IC, Peak Collector Current (A)
25°C
800
750
700
650
600
550
500
450
25°C
200 205 210 215 220 225 230 235 240
VCE, Collector-to-Emitter Voltage (V)
Fig 9.
Typical E
PULSE
vs. Collector Current
1100
V CC = 240V
1000
Energy per Pulse (μJ)
Fig 10.
Typical E
PULSE
vs. Collector-to-Emitter Voltage
1000
Tc = 25°C
Tj = 150°C
Single Pulse
100
IC (A)
L = 220nH
t = 1μs half sine
C= 0.4μF
900
800
700
600
500
400
20
40
60
80
100
120
140
160
TJ, Temperature (ºC)
C= 0.3μF
10μsec
100μsec
1msec
10
C= 0.2μF
1
1.0
10
VCE (V)
100
1000
Fig 11.
E
PULSE
vs. Temperature
Fig 12.
Forrward Bias Safe Operating Area
4
www.irf.com
IRG7SC28UPbF
100000
C oes = C ce + C gc
10000
Capacitance (pF)
VGE, Gate-to-Emitter Voltage (V)
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
16
14
12
10
8
6
4
2
0
IC = 40A
VCES = 120V
VCES = 300V
VCES = 400V
Cies
1000
100
Coes
Cres
10
0
100
200
300
400
500
VCE, Collector-toEmitter-Voltage(V)
0
10
20
30
40
50
60
70
80
Fig 13.
Typical Capacitance vs. Collector-to-Emitter Voltage
6000
5000
4000
Fig 14.
Typical Gate Charge vs. Gate-to-Emitter Voltage
Q G, Total Gate Charge (nC)
EOFF
Energy (μJ)
3000
2000
EON
1000
0
0
10
20
30
40
50
60
70
80
90
IC (A)
Fig. 15
- Typ. Energy Loss vs. I
C
T
J
= 150°C; L = 250μH; V
CE
= 400V, R
G
= 22Ω; V
GE
= 15V
1
D = 0.50
Thermal Response ( Z thJC )
0.20
0.1
0.10
0.05
0.02
0.01
τ
J
τ
J
τ
1
R
1
R
1
τ
2
R
2
R
2
R
3
R
3
τ
3
R
4
R
4
τ
C
τ
τ
1
τ
2
τ
3
τ
4
τ
4
Ri (°C/W)
0.01049
0.08396
0.36433
0.26987
0.000003
0.000068
0.000904
0.008034
τi
(sec)
0.01
Ci=
τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
0.001
1E-006
1E-005
Fig 16.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
t1 , Rectangular Pulse Duration (sec)
www.irf.com
5
查看更多>
430的各个lauchpad借口能互用么??两侧的间距大小一样么?
我现在有一块5739的lauchpad 但是在别的论坛申请的TI c5000低功耗那个,用的是g2x...
philipchen61 微控制器 MCU
《MATLAB与控制系统仿真实践》让你轻松学习MATLAB语言和仿真
《MATLAB与控制系统仿真实践》  《MATLAB与控制系统仿真实践》以MATLAB ...
tiankai001 下载中心专版
请教一个比较急的问题
请教一个比较急的问题,我现在在用HCNR201这个线性光耦来搭电路,输入输出5V供电,运放使用的是3...
安_然 模拟电子
加速度计存在硬件设计漏洞,可导致智能手机被“黑”?
今天看到一个新闻,说通过声音就可以黑掉智能手机,因为‘五大世界知名传感器制造商生产的加速度计存在硬件...
dcexpert ST传感器与低功耗无线技术论坛
11种经典软件滤波算法及其波形效果图(附C语言程序)
经典 软件数据 滤波算法 (后页附带 C 语言 程序) 注意注意注意:(图像中红线都是经过滤...
bqgup 创新实验室
【2024 DigiKey 创意大赛】二月柳絮大作战项目-08项目演示效果
系统组成: 花粉检测: PM2.5烟雾检测: 因为项目出点问题,耽搁...
Maker_kun DigiKey得捷技术专区
热门器件
热门资源推荐
器件捷径:
L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 LA LB LC LD LE LF LG LH LI LJ LK LL LM LN LO LP LQ LR LS LT LU LV LW LX LY LZ M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 MA MB MC MD ME MF MG MH MI MJ MK ML MM MN MO MP MQ MR MS MT MU MV MW MX MY MZ N0 N1 N2 N3 N4 N5 N6 N7 N8 NA NB NC ND NE NF NG NH NI NJ NK NL NM NN NO NP NQ NR NS NT NU NV NX NZ O0 O1 O2 O3 OA OB OC OD OE OF OG OH OI OJ OK OL OM ON OP OQ OR OS OT OV OX OY OZ P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC PD PE PF PG PH PI PJ PK PL PM PN PO PP PQ PR PS PT PU PV PW PX PY PZ Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 QA QB QC QE QF QG QH QK QL QM QP QR QS QT QV QW QX QY R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 RA RB RC RD RE RF RG RH RI RJ RK RL RM RN RO RP RQ RR RS RT RU RV RW RX RY RZ
需要登录后才可以下载。
登录取消