PD - 97569A
PDP TRENCH IGBT
IRG7SC28UPbF
Features
l
Advanced Trench IGBT Technology
l
Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM
)
l
Low V
CE(on)
and Energy per Pulse (E
PULSE
for improved panel efficiency
l
High repetitive peak current capability
l
Lead Free package
Key Parameters
V
CE
min
V
CE(ON)
typ. @ I
C
= 40A
I
RP
max @ T
C
= 25°C
T
J
max
c
600
1.70
225
150
V
V
A
°C
C
C
G
E
G
C
E
n-channel
G
Gate
C
Collector
D
2
Pak
IRG7SC28UPbF
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low V
CE(on)
and low E
PULSETM
rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
V
GE
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
RP
@ T
C
= 25°C
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Gate-to-Emitter Voltage
Continuous Collector Current, V
GE
@ 15V
Continuous Collector, V
GE
@ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
Max.
±30
60
30
225
171
68
1.37
-40 to + 150
300
Units
V
A
c
W
W/°C
°C
10lb in (1.1N m)
x
x
N
Thermal Resistance
R
θJC
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
d
Parameter
Typ.
Max.
0.73
40
Units
°C/W
d
–––
–––
www.irf.com
1
07/11/11
IRG7SC28UPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
CES
V
(BR)ECS
ΔΒV
CES
/ΔT
J
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Min. Typ. Max. Units
Conditions
V
GE
= 0V, I
CE
= 1.0mA
e
600
15
–––
–––
–––
–––
–––
0.57
1.25
1.42
1.70
1.96
2.97
1.75
–––
-11
0.5
30
90
305
–––
–––
55
70
25
30
35
260
145
25
40
280
320
–––
770
930
–––
–––
–––
–––
–––
1.95
–––
–––
–––
V
GE
= 0V, I
CE
= 1.0A
V/°C Reference to 25°C, I
CE
= 1.0mA
V
GE
= 15V, I
CE
= 12A
V
GE
= 15V, I
CE
= 24A
V
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
V
V
CE(on)
Static Collector-to-Emitter Voltage
–––
–––
–––
V
GE(th)
ΔV
GE(th)
/ΔT
J
I
CES
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
2.2
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
100
–––
–––
4.7
V
––– mV/°C
20
–––
–––
100
-100
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
ns
μJ
ns
ns
μA
V
GE
= 15V, I
CE
= 40A, T
J
= 150°C
V
CE
= V
GE
, I
CE
= 250μA
V
CE
= 600V, V
GE
= 0V
e
e
= 40A
e
= 70A
e
= 160A
e
e
V
CE
= 600V, V
GE
= 0V, T
J
= 100°C
V
CE
= 600V, V
GE
= 0V, T
J
= 125°C
V
CE
= 600V, V
GE
= 0V, T
J
= 150°C
I
GES
g
fe
Q
g
Q
gc
t
d(on)
t
r
t
d(off)
t
f
t
d(on)
t
r
t
d(off)
t
f
t
st
E
PULSE
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Shoot Through Blocking Time
Energy per Pulse
nA
S
nC
V
GE
= 30V
V
GE
= -30V
V
CE
= 25V, I
CE
= 40A
V
CE
= 400V, I
C
= 40A, V
GE
= 15V
I
C
= 40A, V
CC
= 400V
R
G
= 22Ω, L=100μH
T
J
= 25°C
I
C
= 40A, V
CC
= 400V
R
G
= 22Ω, L=100μH
T
J
= 150°C
V
CC
= 240V, V
GE
= 15V, R
G
= 5.1Ω
L = 220nH, C= 0.40μF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 25°C
L = 220nH, C= 0.40μF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 100°C
e
Human Body Model
ESD
Machine Model
C
ies
C
oes
C
res
L
C
L
E
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
Internal Emitter Inductance
–––
–––
–––
–––
–––
Class H1C (2000V)
(Per JEDEC standard JESD22-A114)
Class M4 (425V)
(Per EIA/JEDEC standard EIA/JESD22-A115)
V
GE
= 0V
1880 –––
75
–––
pF V
CE
= 30V
45
4.5
7.5
–––
–––
nH
–––
ƒ = 1.0MHz
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:
Half sine wave with duty cycle <= 0.02, ton=1.0μsec.
R
θ
is measured at
T
J
of approximately 90°C.
Pulse width
≤
400μs; duty cycle
≤
2%.
2
www.irf.com
IRG7SC28UPbF
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
100
75
50
25
0
0
2
4
6
ICE (A)
10
100
75
50
25
0
8
0
2
4
6
8
10
VCE (V)
VCE (V)
Fig 1.
Typical Output Characteristics @ 25°C
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
Fig 2.
Typical Output Characteristics @ 75°C
200
175
150
125
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
100
75
50
25
0
0
2
4
6
8
ICE (A)
14
100
75
50
25
0
10
12
0
2
4
6
8
10
12
14
VCE (V)
VCE (V)
Fig 3.
Typical Output Characteristics @ 125°C
200
175
150
125
100
75
50
25
0
2
4
6
8
10
VGE, Gate-to-Emitter Voltage (V)
T J = 25°C
Fig 4.
Typical Output Characteristics @ 150°C
2.0
T J = 150°C
VCE, Voltage Collector-to-Emitter (V)
ICE, Collector-to-Emitter Current (A)
IC = 20A
1.8
1.6
T J = 25°C
T J = 150°C
1.4
1.2
0
5
10
15
20
VGE, Voltage Gate-to-Emitter (V)
Fig 5.
Typical Transfer Characteristics
Fig 6.
V
CE(ON)
vs. Gate Voltage
www.irf.com
3
IRG7SC28UPbF
60
50
40
Repetitive Peak Current (A)
250
200
150
IC (A)
30
20
10
0
25
50
75
100
125
150
100
ton= 2μs
Duty cycle <= 0.05
Half Sine Wave
50
0
25
50
75
100
125
150
Case Temperature (°C)
Fig 7.
Maximum Collector Current vs. Case Temperature
950
900
850
V CC = 240V
L = 220nH
C = variable
100°C
T C (°C)
Fig 8.
Typical Repetitive Peak Current vs. Case Temperature
950
900
850
L = 220nH
C = 0.4μF
100°C
Energy per Pulse (μJ)
Energy per Pulse (μJ)
800
750
700
650
600
550
500
450
160 170 180 190 200 210 220 230 240
IC, Peak Collector Current (A)
25°C
800
750
700
650
600
550
500
450
25°C
200 205 210 215 220 225 230 235 240
VCE, Collector-to-Emitter Voltage (V)
Fig 9.
Typical E
PULSE
vs. Collector Current
1100
V CC = 240V
1000
Energy per Pulse (μJ)
Fig 10.
Typical E
PULSE
vs. Collector-to-Emitter Voltage
1000
Tc = 25°C
Tj = 150°C
Single Pulse
100
IC (A)
L = 220nH
t = 1μs half sine
C= 0.4μF
900
800
700
600
500
400
20
40
60
80
100
120
140
160
TJ, Temperature (ºC)
C= 0.3μF
10μsec
100μsec
1msec
10
C= 0.2μF
1
1.0
10
VCE (V)
100
1000
Fig 11.
E
PULSE
vs. Temperature
Fig 12.
Forrward Bias Safe Operating Area
4
www.irf.com
IRG7SC28UPbF
100000
C oes = C ce + C gc
10000
Capacitance (pF)
VGE, Gate-to-Emitter Voltage (V)
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
16
14
12
10
8
6
4
2
0
IC = 40A
VCES = 120V
VCES = 300V
VCES = 400V
Cies
1000
100
Coes
Cres
10
0
100
200
300
400
500
VCE, Collector-toEmitter-Voltage(V)
0
10
20
30
40
50
60
70
80
Fig 13.
Typical Capacitance vs. Collector-to-Emitter Voltage
6000
5000
4000
Fig 14.
Typical Gate Charge vs. Gate-to-Emitter Voltage
Q G, Total Gate Charge (nC)
EOFF
Energy (μJ)
3000
2000
EON
1000
0
0
10
20
30
40
50
60
70
80
90
IC (A)
Fig. 15
- Typ. Energy Loss vs. I
C
T
J
= 150°C; L = 250μH; V
CE
= 400V, R
G
= 22Ω; V
GE
= 15V
1
D = 0.50
Thermal Response ( Z thJC )
0.20
0.1
0.10
0.05
0.02
0.01
τ
J
τ
J
τ
1
R
1
R
1
τ
2
R
2
R
2
R
3
R
3
τ
3
R
4
R
4
τ
C
τ
τ
1
τ
2
τ
3
τ
4
τ
4
Ri (°C/W)
0.01049
0.08396
0.36433
0.26987
0.000003
0.000068
0.000904
0.008034
τi
(sec)
0.01
Ci=
τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
0.001
1E-006
1E-005
Fig 16.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
t1 , Rectangular Pulse Duration (sec)
www.irf.com
5