PD - 91806C
RADIATION HARDENED
POWER MOSFET
SURFCACE MOUNT(LCC-18)
Product Summary
Part Number
Radiation Level
IRHE7130
100K Rads (Si)
IRHE3130
300K Rads (Si)
IRHE4130
500K Rads (Si)
IRHE8130
1000K Rads (Si)
R
DS(on)
0.18Ω
0.18Ω
0.18Ω
0.18Ω
I
D
8.0A
8.0A
8.0A
8.0A
IRHE7130
JANSR2N7261U
100V, N-CHANNEL
REF: MIL-PRF-19500/601
RAD Hard HEXFET
TECHNOLOGY
™
®
QPL Part Number
JANSR2N7261U
JANSF2N7261U
JANSG2N7261U
JANSH2N7261U
International Rectifier’sRADHardHEXFET
®
technology
provides high performance power MOSFETs for
space applications. This technology has over a
decade of proven performance and reliability in
satellite applications. These devices have been
characterized for both Total Dose and Single Event
Effects (SEE). The combination of low Rdson and
low gate charge reduces the power losses in
switching applications such as DC to DC converters
and motor control. These devices retain all of the well
established advantages of MOSFETs such as voltage
control, fast switching, ease of paralleling and
temperature stability of electrical parameters.
LCC-18
Features:
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low R
DS(on)
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Surface Mount
Light Weight
Absolute Maximum Ratings
Parameter
ID @ VGS = 12V, TC = 25°C Continuous Drain Current
ID @ VGS = 12V, TC = 100°C Continuous Drain Current
IDM
Pulsed Drain Current
À
PD @ T C = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Á
Avalanche Current
À
Repetitive Avalanche Energy
À
Peak Diode Recovery dv/dt
Â
Operating Junction
Storage Temperature Range
Package Mounting Surface Temperature
Weight
For footnotes refer to the last page
8.0
5.0
32
25
0.20
±20
130
8.0
2.5
5.5
-55 to 150
Pre-Irradiation
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (for 5s)
0.42 (Typical)
g
www.irf.com
1
04/28/06
IRHE7130, JANSR2N7261U
Pre-Irradiation
Electrical Characteristics
@ Tj = 25°C (Unless Otherwise Specified)
Parameter
BVDSS
Drain-to-Source Breakdown Voltage
∆BV
DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Min
100
—
—
—
2.0
2.5
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ Max Units
—
0.10
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6.1
1100
310
55
—
—
0.18
0.185
4.0
—
25
250
100
-100
50
12
20
25
55
55
45
—
—
—
—
V
V/°C
Ω
V
S( )
µA
Ω
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, ID = 1.0mA
VGS = 12V, ID =5.0A
Ã
VGS = 12V, ID = 8.0A
VDS = VGS, ID = 1.0mA
VDS > 15V, IDS = 5.0A
Ã
VDS= 80V ,VGS=0V
VDS = 80V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID =8.0A
VDS = 50V
VDD = 50V, ID =8.0A
VGS =12V, RG = 7.5Ω
IGSS
IGSS
Qg
Q gs
Q gd
td
(on)
tr
td
(off)
tf
LS + LD
Ciss
C oss
C rss
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
nA
nC
ns
nH
pF
Measured from the center of drain
pad to center of source pad
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
IS
ISM
VSD
trr
Q RR
ton
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode)
À
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min Typ Max Units
—
—
—
—
—
—
—
—
—
—
8.0
32
1.5
350
3.0
Test Conditions
A
V
ns
µC
T
j
= 25°C, IS = 8.0A, VGS = 0V
Ã
Tj = 25°C, IF = 8.0A, di/dt
≤
100A/µs
VDD
≤
50V
Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
RthJ-PCB
Junction-to-Case
Junction-to-PC Board
Min Typ Max
—
—
—
19
5.0
—
Units
°C/W
Test Conditions
Soldered to a copper clad PC board
Note: Corresponding Spice and Saber models are available on the International Rectifier Website.
For footnotes refer to the last page
2
www.irf.com
Pre-Irradiation
Radiation Characteristics
IRHE713O, JANSR2N7261U
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation
ÄÅ
Parameter
BV
DSS
V
GS(th)
I
GSS
I
GSS
I
DSS
R
DS(on)
R
DS(on)
V
SD
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source
Ã
On-State Resistance (TO-3)
Static Drain-to-Source
Ã
On-State Resistance (LCC-18)
Diode Forward Voltage
Ã
100K Rads(Si)
1
300 - 1000K Rads (Si)
2
Units
V
nA
µA
Ω
Ω
V
Test Conditions
V
GS
= 0V, I
D
= 1.0mA
V
GS
= V
DS
, I
D
= 1.0mA
V
GS
= 20V
V
GS
= -20 V
V
DS
=80V, V
GS
=0V
V
GS
= 12V, I
D
=5.0A
V
GS
= 12V, I
D
=5.0A
V
GS
= 0V, IS = 8.0A
Min
100
2.0
—
—
—
—
—
—
Max
—
4.0
100
-100
25
0.18
0.18
1.5
Min
100
1.25
—
—
—
—
—
—
Max
—
4.5
100
-100
50
0.24
0.24
1.5
1. Part number IRHE7130 (JANSR2N7261U)
2. Part numbers IRHE3130 (JANSF2N7261U), IRHE4130 (JANSG2N7261U) and IRHE8130 (JANSH2N7261U)
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
Cu
Br
LET
(MeV/(mg/cm
2
))
28
36.8
Energy
(MeV)
285
305
Range
(µm)
43
39
V
DS(V)
@
V
GS
=0V @
V
GS
=-5V @
V
GS
=-10V @
V
GS
=-15V @
V
GS
=-20V
100
100
100
90
100
70
80
50
60
—
120
100
80
VDS
60
40
20
0
0
-5
-10
VGS
-15
-20
-25
Cu
Br
Fig a.
Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHE7130, JANSR2N7261U
Post-Irradiation
Pre-Irradiation
Fig 1.
Typical Response of Gate Threshhold
Fig 2.
Typical Response of On-State Resistance
Voltage Vs. Total Dose Exposure
Vs. Total Dose Exposure
Fig 3.
Typical Response of Transconductance
Vs. Total Dose Exposure
Fig 4.
Typical Response of Drain to Source
Breakdown Vs. Total Dose Exposure
4
www.irf.com
Pre-Irradiation
Post-Irradiation
IRHE713O, JANSR2N7261U
Fig 5.
Typical Zero Gate Voltage Drain
Current Vs. Total Dose Exposure
Fig 6.
Typical On-State Resistance Vs.
Neutron Fluence Level
Fig 8a.
Gate Stress of
V
GSS
Equals 12 Volts During
Radiation
Fig 7.
Typical Transient Response
of Rad Hard HEXFET During 1x10
12
Rad (Si)/Sec Exposure
Fig 8b.
V
DSS
Stress Equals
80% of B
VDSS
During Radiation
www.irf.com
5