LCE6.5 thru LCE170A
Transient Voltage Suppressor
Breakdown Voltage 6.5 to 170 Volts
Peak Pulse Power
1500 Watts
Features
CASE: DO-204AL (DO-27)
Dimensions in inches and (millimeters)
Maximum Ratings and Electrical Characteristics
@
Symbol
P
PPM
I
PPM
Conditions
Peak pulse power capability with a 10/1000μs
Peak pulse current with a 10/1000μs
打
效
无
印
Application
Breakdown Voltages (V
BR
)from 6.5 to 170V
1500W peak pulse power capability with a 10/1000μs
waveform, repetitive rate (duty cycle):0.01%
Low capacitance
Fast Response Time
Excellent clamping capability
High temperature soldering guaranteed: 265
℃
/10
seconds, 0.375” (9.5mm) lead length, 5lbs. (2.3kg)
tension
Use in sensitive electronics protection against voltage
transients induced by inductive load switching and
lighting on IC
S
, MOSFE, signal lines of sensor units for
consumer, computer, industrial, automotive and
telecommunication
Mechanical Data
Case:
Void-free transfer molded thermosetting epoxy
body meeting UL94V-O
Terminals:
Tin-Lead or ROHS Compliant annealed
matte-Tin plating readily solderable per MIL-STD-750,
Method 2026
Marking:
Part number and cathode band
Polarity:
Cathode indicated by band
Weight:
1.2g(Approximately)
25 C unless otherwise specified
O
Value
1500
SEE TABLE1
5
1.52
3.5
22
82
-65 to +150
Unit
W
A
W
W
V
℃/W
℃/W
℃
Steady state power dissipation at T
L
=40℃ ,Lead lengths 0.375”(10mm)
P
M(AV)
V
F
R
θJL
R
θJA
T
J,
T
STG
Steady state power dissipation at T
A
=25℃ when mounted on FR4 PC
described for thermal resistance
Maximum instantaneous forward voltage at 100A
Thermal resistance junction to lead
Thermal resistance junction to ambient
Operating and Storage Temperature
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
www.smsemi.com
1
LCE6.5 thru LCE170A
Electrical Characteristics @ 25° (Unless Otherwise Noted) TABLE1
C
Breakdown
Voltage
V
BR
@ I
BR
MIN
LCE6.5
LCE6.5A
LCE7.0
LCE7.0A
LCE7.5
LCE7.5A
LCE8.0
LCE8.0A
LCE8.5
LCE8.5A
LCE9.0
LCE9.0A
LCE10
LCE10A
LCE11
LCE11A
LCE12
LCE12A
LCE13
LCE13A
LCE14
LCE14A
LCE15
LCE15A
LCE16
LCE16A
LCE17
LCE17A
LCE18
LCE18A
LCE20
LCE20A
LCE22
LCE22A
LCE24
LCE24A
LCE26
LCE26A
LCE28
LCE28A
LCE30
LCE30A
LCE33
LCE33A
LCE36
LCE36A
LCE40
LCE40A
LCE43
LCE43A
LCE45
LCE45A
LCE48
LCE48A
LCE51
LCE51A
MAX
Reverse
Stand
Off
Voltage
I
BR
(mA)
10
10
10
10
10
10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
V
WM
(V)
6.5
6.5
7.0
7.0
7.5
7.5
8.0
8.0
8.5
8.5
9.0
9.0
10.0
10.0
11.0
11.0
12.0
12.0
13.0
13.0
14.0
14.0
15.0
15.0
16.0
16.0
17.0
17.0
18.0
18.0
20.0
20.0
22.0
22.0
24.0
24.0
26.0
26.0
28.0
28.0
30.0
30.0
33.0
33.0
36.0
36.0
40.0
40.0
43.0
43.0
45.0
45.0
48.0
48.0
51.0
51.0
Maximum
Standby
current
I
D
@ V
WM
I
D
(µA)
1000
1000
500
500
250
250
100
100
50
50
10
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Maximum
Peak
Pulse
Current
I
PP
@ 10/
1000µs
I
PP
(A)
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
94.0
100.0
89.0
97.0
80.0
88.0
74.0
82.0
68.0
75.0
63.0
70.0
58.0
65.0
56.0
61.0
52.0
57.0
49.0
54.0
46.0
51.0
42.0
46.0
38.0
42.0
35.0
39.0
32.0
36.0
30.0
33.0
28.0
31.0
25.4
28.1
23.3
25.8
21.0
23.0
19.5
21.6
18.7
20.6
17.5
19.4
16.5
18.2
Maximum
Clamping
Voltage
V
C
@ I
PP
V
C
(V)
12.3
11.2
13.3
12.0
14.3
12.9
15.0
13.6
15.9
14.4
16.9
15.4
18.8
17.0
20.1
18.2
22.0
19.9
23.8
21.5
25.8
23.2
26.9
24.4
28.8
26.0
30.5
27.6
32.2
29.2
35.8
32.4
39.4
35.5
43.0
38.9
46.6
42.1
50.0
45.4
53.5
48.4
58.0
53.3
64.3
58.1
71.4
64.5
76.7
69.4
80.3
72.7
85.5
77.4
91.1
82.4
Maximum
Capacitance
@ 0V
f=1MH
Z
pF
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
Working Inverse
Blocking Voltage
II
IB
@V
WIB
Peak
Inverse
Blocking
Voltage
V
PIB
(V)
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
Microsemi
Part
Number
打
V
BR
(V)
7.22
8.82
7.22
7.98
7.78
9.51
7.78
8.60
8.33
10.2
8.33
9.21
8.89
10.9
8.89
9.83
9.44
11.5
9.44
10.4
10.0
12.2
10.0
11.1
11.1
13.6
11.1
12.3
12.2
14.9
12.2
13.5
13.3
16.3
13.3
14.7
14.4
17.6
14.4
15.9
15.6
19.1
15.6
17.2
16.7
20.4
16.7
18.5
17.8
21.8
17.8
19.7
18.9
23.1
18.9
20.9
20.0
24.4
20.0
22.1
22.2
27.1
22.2
24.5
24.4
29.8
24.4
26.9
26.7
32.6
26.7
29.5
28.9
35.3
28.9
31.9
31.1
38.0
31.1
34.4
33.3
40.7
33.3
36.8
36.7
44.9
36.7
40.6
40.0
48.9
40.0
44.2
44.4
54.3
44.4
49.1
47.8
58.4
47.8
52.8
50.0
61.1
50.0
55.3
53.3
65.1
53.3
58.9
56.7
69.3
56.7
62.7
效
无
印
www.smsemi.com
2
V
WIB
(V)
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
150
150
150
150
150
150
150
150
I
IB
(μA)
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
LCE6.5 thru LCE170A
Microsemi
Part
Number
Breakdown
Voltage
V
BR
@ I
BR
MIN
MAX
Reverse
Stand
Off
Voltage
Maximum
Standby
current
I
D
@ V
WM
Maximum
Peak
Pulse
Current
I
PP
@ 10/
1000µs
Maximum
Clamping
Voltage
V
C
@ I
PP
Maximum
Capacitance
@ 0V
f=1MH
Z
Working Inverse
Blocking Voltage
II
IB
@V
WIB
Peak
Inverse
Blocking
Voltage
V
PIB
(V)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
400
400
400
400
400
400
400
400
400
400
400
400
I
BR
V
BR
(V)
V
WM
(V)
I
D
(µA)
I
PP
(A)
V
C
(V)
(mA)
LCE54
60.0
73.3
1
54.0
5
15.6
96.3
LCE54A
60.0
66.3
1
54.0
5
17.2
87.1
LCE58
64.4
78.7
1
58.0
5
14.6
103.0
LCE58A
64.4
71.2
1
58.0
5
16.0
93.6
LCE60
66.7
81.5
1
60.0
5
14.0
107.0
LCE60A
66.7
73.7
1
60.0
5
15.5
96.8
LCE64
71.1
86.9
1
64.0
5
13.2
114.0
LCE64A
71.1
78.6
1
64.0
5
14.6
103.0
LCE70
77.8
95.1
1
70.0
5
12.0
125.0
LCE70A
77.8
86.0
1
70.0
5
13.3
113.0
LCE75
83.3
102
1
75.0
5
11.2
134.0
LCE75A
83.3
92.1
1
75.0
5
12.4
121.0
LCE80
88.7
108
1
80.0
5
10.6
142.0
LCE80A
88.7
98.0
1
80.0
5
11.6
129.0
LCE90
100
122
1
90.0
5
9.4
160.0
LCE90A
100
111
1
90.0
5
10.3
146.0
LCE100
111
136
1
100.0
5
8.4
179.0
LCE100A
111
123
1
100.0
5
9.3
162.0
LCE110
122
149
1
110.0
5
7.7
196.0
LCE110
122
135
1
110.0
5
8.4
178.0
LCE120
133
163
1
120.0
5
7.0
214.0
LCE120A
133
147
1
120.0
5
7.8
193.0
LCE130
144
176
1
130.0
5
6.5
231.0
LCE130A
144
159
1
130.0
5
7.2
209.0
LCE150
167
204
1
150.0
5
5.6
268.0
LCE150A
167
185
1
150.0
5
6.2
243.0
LCE160
178
218
1
160.0
5
5.2
287.0
LCE160A
178
197
1
160.0
5
5.8
259.0
LCE170
189
231
1
170.0
5
4.9
304.0
LCE170A
189
209
1
170.0
5
5.4
275.0
Note1:
A transient voltage suppressor is normally selected according to voltage (V
WM
), which
greater than the dc or continuous peak operating voltage level.
Characteristic Curve
100
I
PP
t
W
I
PP
- Peak Pulse Current - % I
PP
P
PP
- Peak Pulse Power (kW)
10
印
打
1.0
I
PP
0.5
Impulse
Exponential
Decay
t
W
Half Sine
t
W
=0.71
p
t
p
Square
Wave
t
W
Current Waveforms
效
无
t
r
=10µs
Peak Value I
PP
Half Value I
PP
2
10/1000µs Waveform
as defined by R.E.A.
pF
V
WIB
(V) IIB(μA)
100
150
10
100
150
10
100
150
10
100
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
should be equal to or
150
100
1.0
50
0.1
0.1
1.0
10
t
w
-Pulse Width (
µs)
10
2
10
3
0
0
1.0
2.0
t-Time (ms)
3.0
4.0
Fig. 1 Peak Pulse Power vs. Pulse Time
Fig.2 Pulse Waveform for Exponential Surge
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
www.smsemi.com
3
LCE6.5 thru LCE170A
100
P
PP
-Peak Pulse Power or continuous
Average Power in Percent of 25
℃
(%)
Peak Pulse Power
(Single pulse).
75
50
25
Average
Power
0
0
50
100
150
Lead or Ambient Temperature (℃)
200
Fig.3 Derating Curve
Schematic Applications
The TVS low capacitance device configuration is shown in Fig.4. As a further option for unidirectional applications, an
additional low capacitance rectifier diode may be used in parallel in the sane polarity direction as the TVS as shown in
Fig.5. In applications where random high voltage transients occur, this will prevent reverse transients from damaging
the internal low capacitance rectifier diode and also provide a low voltage conducting direction. The added rectifier
diode should be of similar low capacitance and also have a higher reverse voltage rating than the TVS clamping
voltage V
C.
If using two (2) low capacitance TVS devices in also provided. The unidirectional and bidirectional
configurations in Fig.5 and 6 will both in twice the capacitance of Fig.4
Fig.4 TVS with internal
Low Capacitance Diode
印
打
TVS
DIODE
效
无
+
OUT
IN
+
Fig.6 Optional Bidirectional
configuration (two TVS and
devices in anti-parallel)
www.smsemi.com
Fig.5 Optional Unidirectional
configuration (TVS and
separate rectifier diode
in parallel)
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
4