D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
LM339, LM339A, LM239,
LM239A, LM2901, M2901V,
MC3302
Quad Single Supply
Comparators
These comparators are designed for use in level detection, low–level
sensing and memory applications in consumer automotive and
industrial electronic applications.
•
Single or Split Supply Operation
•
Low Input Bias Current: 25 nA (Typ)
•
Low Input Offset Current:
±5.0
nA (Typ)
•
Low Input Offset Voltage:
±1.0
mV (Typ) LM139A Series
•
Input Common Mode Voltage Range to Gnd
•
Low Output Saturation Voltage: 130 mV (Typ) @ 4.0 mA
•
TTL and CMOS Compatible
•
ESD Clamps on the Inputs Increase Reliability without Affecting
Device Operation
MAXIMUM RATINGS
Rating
Power Supply Voltage
LM239, A/LM339A/LM2901, V
MC3302
Input Differential Voltage Range
LM239, A/LM339A/LM2901, V
MC3302
Input Common Mode Voltage Range
Output Short Circuit to Ground (Note 1)
Power Dissipation @ TA = 25°C
Plastic Package
Derate above 25°C
Junction Temperature
Operating Ambient Temperature Range
LM239, A
MC3302
LM2901
LM2901V
LM339, A
Storage Temperature Range
Symbol
VCC
Value
+36 or
±18
+30 or
±15
Vdc
36
30
VICMR
ISC
PD
–0.3 to VCC
Continuous
1.0
8.0
TJ
TA
150
–25 to +85
–40 to +85
–40 to +105
–40 to +125
0 to +70
–65 to +150
W
mW/°C
°C
°C
Vdc
Output 2
Output 1
VCC
– Input 1
+ Input 1
– Input 2
+ Input 2
1
2
3
4
5
6
7
14
13
12
http://onsemi.com
14
1
N, P SUFFIX
CASE 646
14
1
Unit
Vdc
SO–14
D SUFFIX
CASE 751A
PIN CONNECTIONS
Output 3
Output 4
Gnd
+ Input 4
– Input 4
+ Input 3
– Input 3
VIDR
*
)
*
)
1
4
)
*
)
*
11
10
9
8
2
3
(Top View)
°C
Tstg
NOTE:
1. The maximum output current may be as high as 20 mA, independent of the magnitude of VCC.
Output short circuits to VCC can cause excessive heating and eventual destruction.
Figure 1. Circuit Schematic
+ Input
– Input
VCC
Output
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
Gnd
NOTE:
Diagram shown is for 1 comparator.
©
Semiconductor Components Industries, LLC, 1999
1
October, 1999 – Rev. 3
Publication Order Number:
LM339/D
LM339, LM339A, LM239, LM239A, LM2901, M2901V, MC3302
ELECTRICAL CHARACTERISTICS
(VCC = +5.0 Vdc, TA = +25°C, unless otherwise noted)
LM239A/339A
Characteristic
Input Offset Voltage (Note 4)
Input Bias Current (Notes 4, 5)
(Output in Analog Range)
Input Offset Current (Note 4)
Input Common Mode Voltage
Range
Supply Current
RL =
∞
(For All Comparators)
RL =
∞,
VCC = 30 Vdc
Voltage Gain
RL
≥
15 kΩ, VCC = 15 Vdc
Large Signal Response Time
VI = TTL Logic Swing,
Vref = 1.4 Vdc, VRL = 5.0 Vdc,
RL = 5.1 kΩ
Response Time (Note 6)
VRL = 5.0 Vdc, RL = 5.1 kΩ
Output Sink Current
VI (–)
≥
+1.0 Vdc, VI(+) = 0,
VO
≤
1.5 Vdc
Saturation Voltage
VI(–)
≥
+1.0 Vdc, VI(+) = 0,
Isink
≤
4.0 mA
Output Leakage Current
VI(+)
≥
+1.0 Vdc, VI(–) = 0,
VO = +5.0 Vdc
Symbol
VIO
IIB
IIO
VICMR
ICC
–
–
AVOL
–
50
–
0.8
1.0
200
300
2.0
2.5
–
–
–
–
50
–
0.8
1.0
200
300
2.0
2.5
–
–
–
–
25
–
0.8
1.0
100
300
2.0
2.5
–
–
–
–
25
–
0.8
1.0
100
300
2.0
2.5
–
–
V/mV
ns
Min
–
–
–
0
Typ
±1.0
25
±5.0
–
Max
±2.0
250
±50
VCC
–1.5
–
–
–
0
LM239/339
Min
Typ
±2.0
25
±5.0
–
Max
±5.0
250
±50
VCC
–1.5
LM2901/2901V
Min
–
–
–
0
Typ
±2.0
25
±5.0
–
Max
±7.0
250
±50
VCC
–1.5
Min
–
–
–
0
MC3302
Typ
±3.0
25
Max
±20
500
Unit
mVdc
nA
nA
V
mA
±3.0 ±100
–
VCC
–1.5
–
ISink
–
6.0
1.3
16
–
–
–
6.0
1.3
16
–
–
–
6.0
1.3
16
–
–
–
6.0
1.3
16
–
–
µs
mA
Vsat
–
130
400
–
130
400
–
130
400
–
130
500
mV
IOL
–
0.1
–
–
0.1
–
–
0.1
–
–
0.1
–
nA
PERFORMANCE CHARACTERISTICS
(VCC = +5.0 Vdc, TA = Tlow to Thigh [Note 3])
LM239A/339A
Characteristic
Input Offset Voltage (Note 4)
Input Bias Current (Notes 4, 5)
(Output in Analog Range)
Input Offset Current (Note 4)
Input Common Mode Voltage
Range
Saturation Voltage
VI(–)
≥
+1.0 Vdc, VI(+) = 0,
Isink
≤
4.0 mA
Output Leakage Current
VI(+)
≥
+1.0 Vdc, VI(–) = 0,
VO = 30 Vdc
Differential Input Voltage
All VI
≥
0 Vdc
Symbol
VIO
IIB
IIO
VICMR
Vsat
Min
–
–
–
0
–
Typ
–
–
–
–
–
Max
±4.0
400
±150
VCC
–2.0
700
–
–
–
0
–
LM239/339
Min
Typ
–
–
–
–
–
Max
±9.0
400
±150
VCC
–2.0
700
LM2901/2901V
Min
–
–
–
0
–
Typ
–
–
–
–
–
Max
±15
500
±200
VCC
–2.0
700
Min
–
–
–
0
–
MC3302
Typ
–
–
–
–
–
Max
±40
1000
±300
VCC
–2.0
700
Unit
mVdc
nA
nA
V
mV
IOL
–
–
1.0
–
–
1.0
–
–
1.0
–
–
1.0
µA
VID
–
–
VCC
–
–
VCC
–
–
VCC
–
–
VCC
Vdc
NOTES:
3. (LM239/239A) Tlow = –25°C, Thigh = +85°
(LM339/339A) Tlow = 0°C, Thigh = +70°C
(MC3302) Tlow = –40°C, Thigh = +85°C
(LM2901) Tlow = –40°C, Thigh = +105°
(LM2901V) Tlow = –40°C, Thigh = +125°C
4. At the output switch point, VO
1.4 Vdc, RS
≤
100
Ω
5.0 Vdc
≤
VCC
≤
30 Vdc, with the inputs over the full common mode range
(0 Vdc to VCC –1.5 Vdc).
5. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.
6. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals, 300 ns is typical.
]
http://onsemi.com
2
LM339, LM339A, LM239, LM239A, LM2901, M2901V, MC3302
Figure 2. Inverting Comparator
with Hystersis
+ VCC
R3
10 k
Vin
+ VCC
Rref
–
+
R2
R1
1.0 M
Figure 3. Noninverting Comparator
with Hysteresis
+ VCC
10 k
VO
Rref
Vref
R1
–
R2
10 k
R3
1.0 M
R2
[VO(max) – VO(min)]
Vref =
VCC R1
Rref + R1
+
VO
10 k
Vref
10k
Vin
[
R3
]
R1 / / Rref / / R2
Vref
VCC R1
Rref + R1
VH =
R2
R1 / / Rref
R1/ / Rref + R2
Rref / / R1
[
R1 / / Rref
Amount of Hysteresis VH
R2
VH =
[(V
–V
]
R2 + R3 O(max) O(min)
Typical Characteristics
(VCC = 15 Vdc, TA = +25°C (each comparator) unless otherwise noted.)
Figure 4. Normalized Input Offset Voltage
1.40
NORMALIZED OFFSET VOLTAGE
I IB, INPUT BIAS CURRENT (nA)
48
42
36
30
24
18
12
6.0
0
–50
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
0
4.0
8.0
12
16
20
24
VCC, POWER SUPPLY VOLTAGE (Vdc)
28
32
TA = +125°C
TA = –55° C
TA = +25° C
Figure 5. Input Bias Current
1.20
1.00
0.80
0.60
Figure 6. Output Sink Current versus
Output Saturation Voltage
8.0
IO, OUTPUT CURRENT (mA)
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
0
100
200
300
400
500
Vsat, OUTPUT SATURATION VOLTAGE (mV)
TA = –55° C
TA = +125°C
TA = +25° C
http://onsemi.com
3
LM339, LM339A, LM239, LM239A, LM2901, M2901V, MC3302
Figure 7. Driving Logic
VCC
Figure 8. Squarewave Oscillator
VCC
≥
4.0 V
100 k
+
C
R2
VCC
–
+
R3
330 k
R4
RL
kΩ
100
10
330 k
R1
VO
VCC
T1
10 k
Vin
Vref
RS
+
–
RL
R1
RS = Source Resistance
R1 RS
Logic
CMOS
TTL
Device
1/4 MC14001
1/4 MC7400
VCC
(V)
+15
+5.0
]
330 k
T2
T1 = T2 = 0.69 RC
7.2
f
C(µF)
[
R2 = R3 = R4
R1 R2 // R3 // R4
[
APPLICATIONS INFORMATION
These quad comparators feature high gain, wide
bandwidth characteristics. This gives the device oscillation
tendencies if the outputs are capacitively coupled to the
inputs via stray capacitance. This oscillation manifests itself
during output transitions (VOL to VOH). To alleviate this
situation input resistors < 10 kΩ should be used. The
Figure 9. Zero Crossing Detector
(Single Supply)
+15 V
R4
220 k
6.8 k
R2
R5
220 k
addition of positive feedback (< 10 mV) is also
recommended. It is good design practice to ground all
unused input pins.
Differential input voltages may be larger than supply
voltages without damaging the comparator’s inputs.
Voltages more negative than –300 mV should not be used.
Figure 10. Zero Crossing Detector
(Split Supplies)
Vin(min)
≈
0.4 V peak for 1% phase distortion (∆Θ).
Vin
Vin(min)
R1
8.2 k
Vin
D1
*
)
10 M
10 k
VO
VCC
Θ
10 k
VO
*
Vin
+
VEE
15 k
R3
VCC
VO
VEE
∆Θ
Θ
D1 prevents input from going negative by more than 0.6 V.
R1 + R2 = R3
R3
≤
R5
for small error in zero crossing
10
http://onsemi.com
4