LM2901H
High temperature low power quad voltage comparators
Features
■
Wide single supply voltage range or dual
supplies for all devices: +2 V to +36 V or ±1 V
to ±18 V
Very low supply current (1.1 mA) independent
of supply voltage (1.4 mW/comparator at +5 V)
Low input bias current: 25 nA typ.
Low input offset current: ±5 nA typ.
Input common-mode voltage range includes
ground
Low output saturation voltage:
250 mV typ. (I
O
= 4 mA)
Differential input voltage range equal to the
supply voltage
TTL, DTL, ECL, MOS, CMOS compatible
outputs
■
■
■
■
■
■
■
D
SO-14
(Plastic micropackage)
Wafer form
Description
This device consists of four independent precision
voltage comparators. All these comparators are
designed specifically to operate from a single
power supply over a wide range of voltages.
Operation from split power supplies is also
possible.
These comparators also have a unique
characteristic in that the input common-mode
voltage range includes ground even though
operated from a single power supply voltage.
Pin connections
(top view)
Output 2 1
Output 1 2
V
+
CC 3
4
5
6
7
14
13
12
11
10
9
8
Output 3
Output 4
-
V
CC
Non-inverting input 4
Inverting input 4
Non-inverting input 3
Inverting input 3
Inverting input 1
Non-inverting input 1
Inverting input 2
Non-inverting input 2
April 2008
Rev 4
1/9
www.st.com
9
Absolute maximum ratings and operating conditions
LM2901H
1
Absolute maximum ratings and operating conditions
Table 1.
Symbol
V
CC
V
ID
V
in
Supply voltage
Differential input voltage
Input voltage
Output short-circuit to ground
(1)
R
thja
R
thjc
T
j
ESD
T
stg
Thermal resistance junction to ambient
(2)
(SO-14)
Thermal resistance junction to case
(2)
(SO-14)
Maximum junction temperature
HBM: human body model
(3)
MM: machine model
(4)
CDM: charged device model
(5)
Storage temperature range
Absolute maximum ratings (AMR)
Parameter
Value
±18 or 36
±36
-0.3 to +36
20
105
31
150
500
100
1500
-65 to +150
Unit
V
V
V
mA
°C/W
°C/W
°C
V
°C
1. Short-circuit from the output to V
CC+
can cause excessive heating and eventual destruction. The maximum
output current is approximately 20 mA, independent of the magnitude of V
CC+
2. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
3. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
4. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5
Ω).
This is done for all couples of
connected pin combinations while the other pins are floating.
5. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
Table 2.
Symbol
V
CC+
T
oper
V
icm
Operating conditions
Parameter
Supply voltage
Operating free-air temperature range
Input common mode voltage range(V
CC
=30V)
(1)
T
amb
= +25°C
T
min
≤
T
amb
≤
T
max
Value
2 to 36
-40 to +150
0 to V
CC+
-1.5
0 to V
CC+
-2
Unit
V
°C
V
1. The input common-mode voltage of either input signal voltage should not be allowed to go negative by
more than 0.3 V. The upper end of the common-mode voltage range is V
CC+
–1.5 V, but either or both
inputs can go to +30 V without damage.
2/9
LM2901H
Circuit schematics
2
Circuit schematics
Figure 1.
Schematic diagram (1/4 LM2901)
VCC+
3.5µA
100µA
3.5µA
100µA
Non-Inverting
Input
Vo
VCC-
Inverting
Input
VCC-
VCC-
Figure 2.
Pad locations
Name
OUT 1
OUT 2
OUT 3
OUT 4
Pad placement
X
Y
480
480
320
150
-150
-480
-480
-480
480
-150
150
300
480
480
-40
-340
-530
-530
-530
-530
-210
210
530
530
530
530
430
150
Pad dimension
X
80
80
80
80
80
80
80
80
80
80
80
80
80
80
Y
80
80
80
80
80
80
80
80
80
80
80
80
80
80
Year
Vcc +
OUT2
0339
OUT1
Vcc -
VCC+
E-(1)
E+(1)
y
E- (1)
E+ (4)
E-(2)
E+(2)
E-(3)
x
E+ (1)
E+ (4)
E+(3)
E-(4)
E+(4)
E- (2)
E+ (2)
E- (3)
E+ (3)
VCC -
OUT4
OUT3
PD98
The "Origin" coordinate is at the center of the die
All dimensions are specified in micrometers (µm)
3/9
Electrical characteristics
LM2901H
3
Electrical characteristics
Table 3.
Symbol
V
io
I
io
I
ib
A
VD
V
CC+
= 5V, V
CC-
= GND, T
amb
= 25°C (unless otherwise specified)
Parameter
Input offset voltage
(1)
T
min
≤
T
amb
≤T
max
Input offset current
T
min
≤
T
amb
≤T
max
Input bias current (I
I+
or I
I-
)
(2)
T
min
≤
T
amb
≤T
max
Large signal voltage gain
,
V
CC
=15V, R=15kΩ V
o
=1 to 11V
Supply current (all comparators)
V
CC
= +5V, no load
V
CC
= +30V, no load
Differential input voltage
(3)
Low level output voltage
V
id
= -1V, I
sink
= 4mA
T
min
≤
T
amb
≤T
max
High level output current
V
CC
= V
o
= 30V, V
id
= 1V
T
min
≤
T
amb
≤T
max
Output sink current
V
id
= -1V, V
o
= 1.5V
T
min
≤
T
amb
≤T
max
Small signal response time
(4)
R
L
= 5.1kΩ connected to V
CC+
Large signal response time
(5)
TTL input, V
ref
= +1.4V, R
L
= 5.1kΩ to V
CC+
– Output signal at 50% of final value
– Output signal at 95% of final value
6
2
250
25
Min.
Typ.
1
5
25
Max.
7
15
50
150
250
400
Unit
mV
nA
nA
V/mV
200
I
CC
V
ID
V
OL
1.1
1.3
2
2.5
V
CC+
400
700
mA
V
mV
I
OH
0.1
1
nA
µA
mA
I
sink
16
t
re
1.3
μs
t
rel
500
1
ns
µs
1.
At output switch point, V
O
≈
1.4 V, R
S
= 0 with V
CC+
from 5 V to 30 V, and over the full input common-
mode range (0 V to V
CC+
–1.5 V).
2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially
constant, independent of the state of the output, so there is no load on the reference of input lines
3. The response time specified is for a 100 mV input step with 5 mV overdrive.
4. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage
remains within the common-mode range, the comparator will provide a proper output state. The low input
voltage state must not be less than –0.3 V (or 0.3 V below the negative power supply, if used).
5. Maximum values are guaranteed by design.
4/9
LM2901H
Electrical characteristics
Figure 3.
1.0
Supply current vs. supply voltage
Figure 4.
50
INPUT BIAS CURRENT (nA)
Input current vs. supply voltage
SUPPLY CURRENT (mA)
0.8
T
AMB
= - 40 °C
T
AMB
= + 25 °C
40
T
AMB
= - 40 °C
0.6
30
0.4
T
AMB
= + 125 °C
20
T
AMB
= + 25 °C
T
AMB
= + 150 °C
0.2
T
AMB
= + 150 °C
10
T
AMB
= + 125 °C
0.0
0
0
10
20
SUPPLY VOLTAGE (V)
30
40
0
10
20
SUPPLY VOLTAGE (V)
30
40
Figure 5.
Output saturation voltage vs.
output current (V
CC
=5V)
Vol=f(Isink) - Vcc=5V - Vid=-1V - Vicm=Vcc/2
Figure 6.
Output saturation voltage vs.
output current (V
CC
=30V)
Vol=f(Isink) - Vcc=30V - Vid=-1V - Vicm=Vcc/2
10
10
1
150°C
Saturation voltage (V)
1
Saturation voltage (V)
150°C
0.1
0.1
-40°C
-40°C
0.01
0.01
Curves done for :
-40°C, 0°C, 25°C, 70°C, 125°C, 150°C
1E-3
1E-3
Curves done for :
-40°C, 0°C, 25°C, 70°C, 125°C, 150°C
0.1
1E-5
1E-4
1E-3
0.01
0.1
1E-5
1E-4
1E-3
0.01
Output sink current (A)
Output sink current (A)
Figure 7.
OUTPUT
VOLTAGE
(V)
Response time for various input
overdrives - positive transition
Figure 8.
OUTPUT
VOLTAGE
(V)
Response time for various input
overdrives - negative transition
INPUT
VOLTAGE
(mV)
e
I
e
o
INPUT
VOLTAGE
(mV)
6
Input overdrive : 100mV
5
4
5mV
3
2
20mV
1
0
100
T
amb
= +25°C
50
0
0
0.5
1
1.5
TIME (
m
s)
5V
5.1k
W
6
5
4
3
2
1
0
0
-50
-100
Input overdrive : 5mV
20mV
100mV
e
I
5V
5.1kW
e
o
T
amb
= +25°C
0
0.5
1
1.5
TIME (ms)
2
2
5/9