D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
LMH6622 Dual Wideband, Low Noise, 160MHz, Operational Amplifiers
July 2005
LMH6622
Dual Wideband, Low Noise, 160MHz, Operational
Amplifiers
General Description
The LMH6622 is a dual high speed voltage feedback opera-
tional amplifier specifically optimized for low noise. A voltage
, a current noise specifi-
noise specification of 1.6nV/
, a bandwidth of 160MHz, and a harmonic
cation 1.5pA/
distortion specification that exceeds 90dBc combine to make
the LMH6622 an ideal choice for the receive channel ampli-
fier in ADSL, VDSL, or other xDSL designs. The LMH6622
operates from
±
2.5V to
±
6V in dual supply mode and from
+5V to +12V in single supply configuration. The LMH6622 is
stable for A
V
≥
2 or A
V
≤
−1. The fabrication of the LMH6622
on National Semiconductor’s advanced VIP10 process en-
ables excellent (160MHz) bandwidth at a current consump-
tion of only 4.3mA/amplifier. Packages for this dual amplifier
are the 8-lead SOIC and the 8-lead MSOP.
Features
V
S
=
±
6V, T
A
= 25˚C, Typical values unless specified
n
Bandwidth (A
V
= +2)
160MHz
±
2.5V to
±
6V +5V to +12
n
Supply Voltage Range
n
Slew rate
85V/µs
n
Supply current
4.3mA/amp
n
Input common mode voltage
−4.75V to +5.7V
±
4.6V
n
Output Voltage Swing (R
L
= 100Ω)
n
Input voltage noise
1.6nV/
n
Input current noise
1.5pA/
n
Linear output current
90mA
n
Excellent harmonic distortion
90dBc
Applications
n
n
n
n
n
xDSL receiver
Low noise instrumentation front end
Ultrasound preamp
Active filters
Cellphone basestation
xDSL Analog Front End
20029226
© 2005 National Semiconductor Corporation
DS200292
www.national.com
LMH6622
Absolute Maximum Ratings
(Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
ESD Tolerance
Human Body Model
Machine Model
V
IN
Differential
Supply Voltage (V
+
– V
−
)
Voltage at Input Pins
Soldering Information
Infrared or Convection (20 sec)
235˚C
2kV (Note 2)
200V (Note 2)
Wave Soldering (10 sec)
Storage Temperature Range
Junction Temperature (Note 4)
260˚C
−65˚C to +150˚C
+150˚C
Operating Ratings
Supply Voltage (V
+
– V
−
)
Junction Temperature Range
(Note 3), (Note 4)
8-pin SOIC
8-pin MSOP
(Note 1)
±
2.25V to
±
6V
−40˚C to +85˚C
±
1.2V
13.2V
V
+
+0.5V, V
−
−0.5V
Package Thermal Resistance (Note 4) (θ
JA
)
166˚C/W
211˚C/W
±
6V Electrical Characteristics
Unless otherwise specified, T
J
= 25˚C, V
+
= 6V, V
−
= −6V, V
CM
= 0V, A
V
= +2, R
F
= 500Ω, R
L
= 100Ω.
Boldface
limits apply
at the temperature extremes.
Symbol
Parameter
Conditions
Min
(Note 6)
Typ
(Note 5)
160
30
85
40
35
2.3
2.3
1.6
1.5
0.03
0.03
−90
−100
−94
−100
−78
−70
dBc
Max
(Note 6)
Units
Dynamic Performance
f
CL
BW
0.1dB
SR
TS
Tr
Tf
e
n
i
n
DG
DP
HD2
HD3
MTPR
−3dB BW
0.1dB Gain Flatness
Slew Rate (Note 8)
Settling Time
Rise Time
Fall Time
Input Referred Voltage Noise
Input Referred Current Noise
Differential Gain
Differential Phase
2
nd
Harmonic Distortion
3
rd
Harmonic Distortion
Upstream
Downstream
Input Characteristics
V
OS
TC V
OS
I
OS
I
B
R
IN
C
IN
Input Offset Voltage
Input Offset Average Drift
Input Offset Current
Input Bias Current
Input Resistance
Input Capacitance
V
CM
= 0V
V
CM
= 0V (Note 7)
V
CM
= 0V
V
CM
= 0V
Common Mode
Differential Mode
Common Mode
Differential Mode
−1
−1.5
−1.2
−2
+0.2
−2.5
−0.04
4.7
17
12
0.9
1.0
1
1.5
10
15
+1.2
+2
mV
µV/˚C
µA
µA
MΩ
kΩ
pF
pF
V
O
= 200mV
PP
V
O
= 200mV
PP
V
O
= 2V
PP
V
O
= 2V
PP
to
±
0.1%
V
O
= 2V
PP
to
±
1.0%
V
O
= 0.2V Step, 10% to 90%
V
O
= 0.2V Step, 10% to 90%
f = 100kHz
f = 100kHz
R
L
= 150Ω, R
F
= 470Ω, NTSC
R
L
= 150Ω, R
F
= 470Ω, NTSC
f
c
= 1MHz, V
O
= 2V
PP
, R
L
= 100Ω
f
c
= 1MHz, V
O
= 2V
PP
, R
L
= 500Ω
f
c
= 1MHz, V
O
= 2V
PP
, R
L
= 100Ω
f
c
= 1MHz, V
O
= 2V
PP
, R
L
= 500Ω
V
O
= 0.6 V
RMS
, 26kHz to 132kHz
(see test circuit 5)
V
O
= 0.6 V
RMS
, 144kHz to 1.1MHz
(see test circuit 5)
MHz
MHz
V/µs
ns
ns
ns
nV/
pA/
%
deg
dBc
dBc
Distortion and Noise Response
www.national.com
2
LMH6622
±
6V Electrical Characteristics
Symbol
CMVR
CMRR
Parameter
Input Common Mode Voltage
Range
Common-Mode Rejection Ratio
(Continued)
Unless otherwise specified, T
J
= 25˚C, V
+
= 6V, V
−
= −6V, V
CM
= 0V, A
V
= +2, R
F
= 500Ω, R
L
= 100Ω.
Boldface
limits apply
at the temperature extremes.
Conditions
CMRR
≥
60dB
5.5
Input Referred,
V
CM
= −4.2 to +5.2V
V
O
= 4V
PP
f = 1MHz
No Load, Positive Swing
No Load, Negative Swing
R
L
= 100Ω, Positive Swing
R
L
= 100Ω, Negative Swing
R
O
I
SC
Output Impedance
Output Short Circuit Current
f = 1MHz
Sourcing to Ground
∆V
IN
= 200mV (Note 3), (Note 9)
Sinking to Ground
∆V
IN
= −200mV (Note 3), (Note 9)
I
OUT
Output Current
Sourcing, V
O
= +4.3V
Sinking, V
O
= −4.3V
Input Referred,
V
S
= +5V to +6V
Input Referred,
V
S
= −5V to −6V
No Load
80
74
75
69
100
100
4.0
3.8
4.8
4.6
80
75
74
70
Min
(Note 6)
Typ
(Note 5)
−4.75
+5.7
100
Max
(Note 6)
−4.5
Units
V
dB
Transfer Characteristics
A
VOL
X
t
V
O
Large Signal Voltage Gain
Crosstalk
Output Swing
83
−75
5.2
−5.0
4.6
−4.6
0.08
135
130
90
mA
−4
−3.8
Ω
−4.6
−4.4
dB
dB
Output Characteristics
V
mA
Power Supply
+PSRR
−PSRR
I
S
Positive Power Supply
Rejection Ratio
Negative Power Supply
Rejection Ratio
Supply Current (per amplifier)
95
90
4.3
6
6.5
dB
mA
±
2.5V Electrical Characteristics
Unless otherwise specified, all limits guaranteed for T
J
= 25˚C, V
+
= 2.5V, V
−
= −2.5V, V
CM
= 0V, A
V
= +2, R
F
= 500Ω,
R
L
= 100Ω.
Boldface
limits apply at the temperature extremes.
Symbol
Parameter
Conditions
Min
(Note 6)
Typ
(Note 5)
150
20
80
45
40
2.5
2.5
1.7
1.5
3
Max
(Note 6)
Units
Dynamic Performance
f
CL
BW
0.1dB
SR
T
S
T
r
T
f
e
n
i
n
−3dB BW
0.1dB Gain Flatness
Slew Rate (Note 8)
Settling Time
Rise Time
Fall Time
Input Referred Voltage Noise
Input Referred Current Noise
V
O
= 200mV
PP
V
O
= 200mV
PP
V
O
= 2V
PP
V
O
= 2V
PP
to
±
0.1%
V
O
= 2V
PP
to
±
1.0%
V
O
= 0.2V Step, 10% to 90%
V
O
= 0.2V Step, 10% to 90%
f = 100kHz
f = 100kHz
MHz
MHz
V/µs
ns
ns
ns
nV/
pA/
www.national.com
Distortion and Noise Response
LMH6622
±
2.5V Electrical Characteristics
Symbol
HD2
HD3
MTPR
Parameter
2
nd
Harmonic Distortion
3
rd
Harmonic Distortion
Upstream
Downstream
Input Characteristics
V
OS
TC V
OS
I
OS
I
B
R
IN
C
IN
CMVR
CMRR
Input Offset Voltage
Input Offset Average Drift
Input Offset Current
Input Bias Current
Input Resistance
Input Capacitance
Input Common Mode Voltage
Range
Common Mode Rejection Ratio
V
CM
= 0V
(Continued)
Unless otherwise specified, all limits guaranteed for T
J
= 25˚C, V
+
= 2.5V, V
−
= −2.5V, V
CM
= 0V, A
V
= +2, R
F
= 500Ω,
R
L
= 100Ω.
Boldface
limits apply at the temperature extremes.
Conditions
fc = 1MHz, V
O
= 2V
PP
, R
L
= 100Ω
fc = 1MHz, V
O
= 2V
PP
, R
L
= 500Ω
fc = 1MHz, V
O
= 2V
PP
, R
L
= 100Ω
fc = 1MHz, V
O
= 2V
PP
, R
L
= 500Ω
V
O
= 0.4V
RMS
,26kHz to 132kHz
(see test circuit 5)
V
O
= 0.4V
RMS
,144kHz to 1.1MHz
(see test circuit 5)
−1.5
−2.3
−1.5
−2.5
Min
(Note 6)
Typ
(Note 5)
−88
−98
−92
−100
−76
−68
dBc
Max
(Note 6)
Units
dBc
dBc
+0.3
−2.5
+0.01
4.6
17
12
0.9
1.0
−1.25
+1.5
+2.3
1.5
2.5
10
15
mV
µV/˚C
µA
µA
MΩ
kΩ
pF
pF
V
CM
= 0V (Note 7)
V
CM
= 0V
V
CM
= 0V
Common Mode
Differential Mode
Common Mode
Differential Mode
CMRR
≥
60dB
2
Input Referred,
V
CM
= −0.7 to +1.7V
V
O
= 1V
PP
f = 1MHz
No Load, Positive Swing
No Load, Negative Swing
R
L
= 100Ω, Positive Swing
R
L
= 100Ω, Negative Swing
1.2
1
1.4
1.2
80
75
74
−1
+2.2
100
V
dB
Transfer Characteristics
A
VOL
X
t
V
O
Large Signal Voltage Gain
Crosstalk
Output Swing
82
−75
1.7
−1.5
1.5
−1.4
0.1
100
100
137
134
90
mA
−1.1
−0.9
Ω
−1.2
−1
dB
dB
Output Characteristics
V
R
O
I
SC
Output Impedance
Output Short Circuit Current
f = 1MHz
Sourcing to Ground
∆V
IN
= 200mV (Note 3), (Note 9)
Sinking to Ground
∆V
IN
= −200mV (Note 3), (Note 9)
I
OUT
Output Current
Sourcing, V
O
= +0.8V
Sinking, V
O
= −0.8V
Input Referred,
V
S
= +2.5V to +3V
Input Referred,
V
S
= −2.5V to −3V
4
mA
Power Supply
+PSRR
−PSRR
Positive Power Supply Rejection
Ratio
Negative Power Supply
Rejection Ratio
78
72
75
70
93
88
dB
dB
www.national.com