Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) ..................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Package Thermal Characteristics
(Note 1)
TQFN
Junction-to-Ambient Thermal Resistance (θ
JA
)...........30°C/W
Junction-to-Case Thermal Resistance (θ
JC
)..................2°C/W
TSSOP
Junction-to-Ambient Thermal Resistance (θ
JA
)........37.7°C/W
Junction-to-Case Thermal Resistance (θ
JC
)..................2°C/W
Note 1:
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to
www.maximintegrated.com/thermal-tutorial.
Electrical Characteristics
(V
PV1
= 13.5V, V
PV2
= V
PV3
= V
OUT1
, V
PV4
= V
OUT2
; T
A
= T
J
= -40°C to +125°C, unless otherwise noted. Typical values are at T
A
= +25°C under normal conditions, unless otherwise noted.) (Note 2)
PARAMETER
SYMBOL
(Note 3)
Operation < 500ms
PV1 rising
PV1 falling
PV1 falling (option enabled)
6V ≤ V
PV1
≤ 28V
EN = low
Internally generated
Duty cycle = 20% to 90%;
I
LOAD
= 300mA to 1.2A
SKIP mode (Note 4)
V
PV1
= 4V, V
BST
= 9V, I
LX1
= 0.2A
1.4
2.0
-3
-2
300
1.75
2.2
4.75
2.85
3.7
3.3
6.45
0.65
V
LSUP
I
PV1
f
SW
V
OUT1
5.0
14
2.2
2.4
+3
+4
700
2.1
mΩ
A
ms
5.45
CONDITIONS
MIN
3.7
TYP
MAX
28
45
4.0
UNITS
OUT1—SYNCHRONOUS STEP-DOWN DC-DC CONVERTER
Supply-Voltage Range
PV1 Undervoltage Lockout
BST Refresh Load Enable
BST Refresh Load Hysteresis
LSUP Regulator Voltage
Supply Current
PWM Switching Frequency
Voltage Accuracy
DMOS On-Resistance
Current-Limit Threshold
Soft-Start Ramp Time
V
PV1
V
UVLO,R
V
UVLO,F
V
BRLE
V
V
V
V
V
µA
MHz
%
www.maximintegrated.com
Maxim Integrated
│
2
MAX16922
2.2MHz, Dual, Step-Down DC-DC
Converters, Dual LDOs, and
RESET
Electrical Characteristics (continued)
(V
PV1
= 13.5V, V
PV2
= V
PV3
= V
OUT1
, V
PV4
= V
OUT2
; T
A
= T
J
= -40°C to +125°C, unless otherwise noted. Typical values are at T
A
= +25°C under normal conditions, unless otherwise noted.) (Note 2)
PARAMETER
Maximum Output Current
LX1 Leakage Current
Maximum Duty Cycle
Minimum Duty Cycle
OUTS1 Discharge Resistance
DC
MAX
DC
MIN
f
SW
= 2.2MHz
EN = low (or optionally EN = high and
V
PV1
< 5.7V)
V
PV2
f
SW
V
OUT2
Fully operational
Internally generated
Duty cycle = 20% to 90%;
I
LOAD
= 1mA to 600mA, PWM = high
SKIP mode (Note 4)
V
PV2
= 5.0V, I
LX2
= 0.2A
V
PV2
= 5.0V, I
LX2
= 0.2A
0.75
2.7
2.0
-3
-2
150
200
0.9
50
1.5
I
OUT2
V
OUT2
+ 0.5V ≤ V
PV2
≤ 5.5V
V
PV2
= 6V, LX2 = PGND2 or V
PV2
;
T
A
= -40°C to +85°C
Forced-PWM mode only, minimum duty
cycle in skip mode is 0% (Note 4)
V
EN
= 0V
V
PV3
V
OUT3
V
OUT3
+ 0.4V ≤ V
PV3
≤ 5.5V, I
LOAD
= 1mA
I
LOAD
= 0 to 300mA
V
PV3
= 1.8V, I
LOAD
= 250mA (Note 4)
I
OUT3
= 30mA, f = 1kHz
EN = low
V
PV4
V
OUT4
(V
OUT4
+ 0.4V) ≤ V
PV4
≤ 5.5V, I
LOAD
= 1mA
I
LOAD
= 0 to 300mA
V
PV4
= 1.8V, I
LOAD
= 250mA (Note 4)
1.7
-2
-0.2
130
450
320
1.7
-2
-0.2
130
450
57
1
5.5
+2
320
15
70
5.5
+2
600
±1
100
2.2
SYMBOL
I
OUT1
CONDITIONS
(V
OUT1
+ 1.0V) ≤ V
PV1
≤ 28V
V
PV1
= 12V, LX1 = GND or V
PV1
;
T
A
= -40°C to +85°C
MIN
1.2
±1
94
20
70
TYP
MAX
UNITS
A
µA
%
%
Ω
OUT2—SYNCHRONOUS STEP-DOWN DC-DC CONVERTER
Supply-Voltage Range
PWM Switching Frequency
Voltage Accuracy
pMOS On-Resistance
nMOS On-Resistance
pMOS Current-Limit Threshold
nMOS Zero-Crossing Threshold
Soft-Start Ramp Time
Maximum Output Current
LX2 Leakage Current
Duty-Cycle Range
OUTS2 Discharge Resistance
OUT3—LDO REGULATOR
Input Voltage
Voltage Accuracy
Load Regulation
Dropout Voltage
Current Limit
Power-Supply Rejection Ratio
Shutdown Output Resistance
OUT4—LDO REGULATOR
Input Voltage
Voltage Accuracy
Load Regulation
Dropout Voltage
Current Limit
V
%
%
mV
mA
V
%
%
mV
mA
dB
kΩ
5.5
2.4
+3
+4
250
350
1.05
V
MHz
%
%
mΩ
mΩ
A
mA
ms
mA
µA
%
Ω
www.maximintegrated.com
Maxim Integrated
│
3
MAX16922
2.2MHz, Dual, Step-Down DC-DC
Converters, Dual LDOs, and
RESET
Electrical Characteristics (continued)
(V
PV1
= 13.5V, V
PV2
= V
PV3
= V
OUT1
, V
PV4
= V
OUT2
; T
A
= T
J
= -40°C to +125°C, unless otherwise noted. Typical values are at T
A
= +25°C under normal conditions, unless otherwise noted.) (Note 2)
PARAMETER
Power-Supply Rejection Ratio
Shutdown Output Resistance
THERMAL OVERLOAD
Thermal-Shutdown Temperature
Thermal-Shutdown Hysteresis
RESET
OUT1 OV Threshold
OUT1 Reset Threshold
OUT2 Reset Threshold
Reset option 1 (see the
Selector Guide)
Reset option 2 (see the
Selector Guide)
Percentage of nominal output
Reset timeout option 1 (see the
Selector
Guide)
Reset timeout option 2 (see the
Selector
Guide)
Sinking -3mA
28
EN rising
V
EN
= 5V
PWM rising
PWM falling
0 ≤ V
PWM
≤ 5.5V
1
1.8
0.4
1.4
1.8
0.4
0.5
2.2
85
75
85
(Note 4)
150
175
15
110
90
80
90
14.9
ms
1.9
1
0.4
µA
V
µs
V
V
µA
V
V
µA
95
85
95
°C
°C
%
%
%
SYMBOL
EN = low
CONDITIONS
I
OUT4
= 30mA, f = 1kHz
MIN
TYP
57
1
MAX
UNITS
dB
kΩ
Reset Timeout Period
Output-High Leakage Current
Output Low Level
UV Propagation Time
EN LOGIC INPUT
EN Threshold Voltage
EN Threshold Hysteresis
Input Current
PWM LOGIC INPUT
Input High Level
Input Low Level
Logic-Input Current
Note 2:
All units are 100% production tested at T
A
= +25°C. All temperature limits are guaranteed by design.
Note 3:
Once PVI exceeds undervoltage-lockout rising threshold 4.0V and the device is in regulation.
Simultaneous Localization And Mapping,简称SLAM,通常是指在机器人或者其他载体上,通过对各种传感器数据进行采集和计算,生成对其自身位置姿态的定位和场景地图信息的系统。SLAM技术对于机器人或其他智能体的行动和交互能力至为关键,因为它代表了这种能力的基础:知道自己在哪里,知道周围环境如何,进而知道下一步该如何自主行动。它在自动驾驶、服务型机器人...[详细]
科锐公司(Nasdaq:CREE)日前宣布推出 XLamp® XP-E 高效白光 (HEW) LED。该新型高效器件延承了屡获殊荣的 XLamp XP-E 系列 LED 的高光输出及光效优势,使灯具设计可节省一半的 LED 数量,从而有助于灯具和灯泡制造商在降低成本的同时又能保持优异的系统性能。 对于 LED 替代灯和筒灯等照明应用而言,优化的 XP-E HEW LED 可降低初始成本...[详细]
英国剑桥大学计算机实验室(Cambridge University's Computer Laboratory)的研究人员,正在开发一种能纪录人们每日能源消耗量、甚至间接能源消耗量的装置,包括每个人交通移动的方式、空调与电器用品的使用状况,还有每天所吃的食物、使用的物品在制造时所消耗的能源。 这是剑桥大学“Computing for the Future of the Planet...[详细]