D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu r xmu ai s
o
a
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
19-3256; Rev 0; 4/04
Dual, Low-Power, 500Mbps
ATE Drivers/Comparators with 2mA Load
General Description
The MAX9961/MAX9962 dual, low-power, high-speed,
pin electronics driver/comparator/load (DCL) ICs
include, for each channel, a three-level pin driver, a
dual comparator, variable clamps, and an active load.
The driver features a wide voltage range and high-
speed operation, includes high-impedance and active-
termination (3rd-level drive) modes, and is highly linear
even at low voltage swings. The dual comparator pro-
vides low dispersion (timing variation) over a wide vari-
ety of input conditions. The clamps provide damping of
high-speed device-under-test (DUT) waveforms when
the device is configured as a high-impedance receiver.
The programmable load supplies up to 2mA of source
and sink current. The load facilitates contact/continuity
testing and pullup of high-output-impedance devices.
The MAX9961A/MAX9962A provide tight matching of
offset for the drivers and the comparators, allowing ref-
erence levels to be shared across multiple channels in
cost-sensitive systems. Use the MAX9961B/MAX9962B
for system designs that incorporate independent refer-
ence levels for each channel.
The MAX9961/MAX9962 provide high-speed, differen-
tial control inputs compatible with LVPECL, LVDS, and
GTL. The MAX9961/MAX9962 are available with option-
al internal termination resistors. The open-collector
comparator outputs are available with or without inter-
nal pullup resistors. The optional internal resistors sig-
nificantly reduce the discrete component count on the
circuit board.
A 3-wire, low-voltage, CMOS-compatible serial interface
programs the low-leakage, slew-rate limit, and tri-state/
terminate operational configurations of the MAX9961/
MAX9962.
The MAX9961/MAX9962s’ operating range is -1.5V to
+6.5V with power dissipation of only 900mW per chan-
nel. The devices are available in a 100-pin, 14mm x
14mm body, and 0.5mm pitch TQFP. An exposed 8mm
x 8mm die pad on the top (MAX9961) or bottom
(MAX9962) of the package facilitates efficient heat
removal. The device is specified to operate with an
internal die temperature of +70°C to +100°C, and fea-
tures a die temperature monitor output.
♦
♦
♦
♦
♦
♦
♦
♦
♦
Features
Low Power Dissipation: 900mW/Channel (typ)
High Speed: 500Mbps at 3V
P-P
Programmable 2mA Active-Load Current
Low Timing Dispersion
Wide -1.5V to +6.5V Operating Range
Active Termination (3rd-Level Drive)
Low-Leakage Mode: 15nA (max)
Integrated Clamps
Interface Easily with Most Logic Families
MAX9961/MAX9962
♦
Integrated PMU Connection
♦
Digitally Programmable Slew Rate
♦
Internal Termination Resistors
♦
Low Offset Error
Ordering Information
PART
MAX9961ADCCQ
MAX9961AGCCQ*
MAX9961ALCCQ
MAX9961BDCCQ
MAX9961BGCCQ*
MAX9961BLCCQ
MAX9962ADCCQ*
MAX9962AGCCQ*
MAX9962ALCCQ*
MAX9962BDCCQ*
MAX9962BGCCQ*
MAX9962BLCCQ*
TEMP RANGE
0
o
C to +70
o
C
0 C to +70 C
0 C to +70 C
0
o
C to +70
o
C
0 C to +70 C
0
o
C to +70
o
C
0 C to +70 C
0 C to +70 C
0
o
C to +70
o
C
0 C to +70 C
0 C to +70 C
0
o
C to +70
o
C
o
o
o
o
o
o
o
o
o
o
o
o
o
o
PIN-PACKAGE**
100 TQFP-EPR
100 TQFP-EPR
100 TQFP-EPR
100 TQFP-EPR
100 TQFP-EPR
100 TQFP-EPR
100 TQFP-EP
100 TQFP-EP
100 TQFP-EP
100 TQFP-EP
100 TQFP-EP
100 TQFP-EP
*Future
product—contact factory for availability.
**EPR
= Exposed pad reversed (top), EP = exposed pad (bottom).
Applications
Low-Cost Mixed-Signal/System-on-Chip ATE
Commodity Memory ATE
PCI or VXI Programmable Digital Instruments
Pin Configurations appear at end of data sheet.
Selector Guide appears at end of data sheet.
________________________________________________________________
Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Dual, Low-Power, 500Mbps
ATE Drivers/Comparators with 2mA Load
MAX9961/MAX9962
ABSOLUTE MAXIMUM RATINGS
V
CC
to GND .........................................................-0.3V to +11.5V
V
EE
to GND............................................................-7.0V to +0.3V
V
CC
- V
EE
................................................................-0.3V to +18V
GS to GND .............................................................................±1V
DATA_, NDATA_, RCV_, NRCV_, LDEN_,
NLDEN_ to GND................................................-2.5V to +5.0V
DATA_ to NDATA_, RCV_ to NRCV_, LDEN_ to NLDEN_.....±1.5V
V
CCO
_
to GND ..........................................................-0.3V to +5V
SCLK, DIN,
CS, RST,
TDATA_, TRCV_,
TLDEN_ to GND ...................................................-1.0V to +5V
DHV_, DLV_, DTV_, CHV_, CLV_, COM_,
FORCE_, SENSE_ to GND.................................-2.5V to +7.5V
DUT_, LDH_, LDL_ to GND ...................................-2.5V to +7.5V
CPHV_ to GND ......................................................-2.5V to +8.5V
CPLV_ to GND.......................................................-3.5V to +7.5V
DHV_ to DLV_ ......................................................................±10V
DHV_ to DTV_ ......................................................................±10V
DLV_ to DTV_.......................................................................±10V
CHV_ or CLV_ to DUT_ ........................................................±10V
CH_, NCH_, CL_, NCL_ to GND...............................-2.5V to +5V
All Other Pins to GND .......................(V
EE
- 0.3V) to (V
CC
+ 0.3V)
DHV_, DLV_, DTV_, CHV_, CLV_, CPHV_, CPLV_ Current ...±10mA
TEMP Current...................................................-0.5mA to +20mA
DUT_ Short Circuit to -1.5V to +6.5V..........................Continuous
Power Dissipation (T
A
= +70°C)
MAX9961_ _CCQ (derate 167mW/°C above +70°C) ...13.3W*
MAX9962_ _CCQ (derate 45.5mW/°C above +70°C) ....3.6W*
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature ......................................................+125°C
Lead Temperature (soldering, 10s) .................................+300°C
*Dissipation
wattage values are based on still air with no heat sink for the MAX9961 and slug soldered to board copper for the
MAX9962. Actual maximum allowable power dissipation is a function of heat extraction technique and may be substantially higher.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(V
CC
= +9.75V, V
EE
= -5.25V, V
CCO_
= +2.5V, SC1 = SC0 = 0, V
CPHV_
= +7.2V, V
CPLV_
= -2.2V, V
LDH_
= V
LDL_
= 0, V
GS
= 0, T
J
=
+85°C, unless otherwise noted. All temperature coefficients are measured at T
J
= +70°C to +100°C, unless otherwise noted.) (Note 1)
PARAMETER
POWER SUPPLIES
Positive Supply
Negative Supply
Positive Supply Current (Note 2)
Negative Supply Current (Note 2)
Power Dissipation
DUT_ CHARACTERISTICS
Operating Voltage Range
Leakage Current in
High-Impedance Mode
V
DUT
I
DUT
(Note 4)
LLEAK = 0, 0
≤
V
DUT
_
≤
3V
LLEAK = 0, V
DUT
_ = -1.5V, +6.5V
LLEAK = 1; V
DUT_
= -1.5V, 0, +3V;
V
LDH
_ = V
LDL
_ = 0, 5V; T
J
< +90°C
LLEAK = 1, V
DUT
_ = 6.5V, T
J
< +90°C,
V
CHV
_ = V
CLV
_ = 6.5V, V
LDH_ =
V
LDL
_ = 0, 5V
C
DUT
Driver in term mode (DUT_ = DTV_)
Driver in high-impedance mode
(Notes 5, 7)
1
5
20
-1.5
+6.5
±1.5
±3
±15
nA
±30
pF
µs
V
µA
V
CC
V
EE
I
CC
I
EE
P
D
V
LDH
_ = V
LDL
_ = 0
V
LDH
_ = V
LDL
_ = 5V
V
LDH
_ = V
LDL
_ = 0
V
LDH
_ = V
LDL
_ = 5V
(Notes 2, 3)
9.5
-6.5
9.75
-5.25
90
100
-180
-190
1.8
10.5
-4.5
110
120
-200
-210
2.1
V
V
mA
mA
W
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Leakage Current in
Low-Leakage Mode
Combined Capacitance
Low-Leakage Enable Time
2
_______________________________________________________________________________________
Dual, Low-Power, 500Mbps
ATE Drivers/Comparators with 2mA Load
ELECTRICAL CHARACTERISTICS (continued)
(V
CC
= +9.75V, V
EE
= -5.25V, V
CCO_
= +2.5V, SC1 = SC0 = 0, V
CPHV_
= +7.2V, V
CPLV_
= -2.2V, V
LDH_
= V
LDL_
= 0, V
GS
= 0, T
J
=
+85°C, unless otherwise noted. All temperature coefficients are measured at T
J
= +70°C to +100°C, unless otherwise noted.) (Note 1)
PARAMETER
Low-Leakage Disable Time
Low-Leakage Recovery
SYMBOL
(Notes 6, 7)
Time to return to the specified maximum
leakage after a 3V, 4V/ns step at DUT_
(Note 7)
CONDITIONS
MIN
TYP
20
15
MAX
UNITS
µs
µs
MAX9961/MAX9962
LEVEL PROGRAMMING INPUTS
(DHV_, DLV_, DTV_, CHV_, CLV_, CPHV_, CPLV_, COM_, LDH_, LDL_)
Input Bias Current
Settling Time
Input High Voltage
Input Low Voltage
Differential Input Voltage
Input Bias Current
Input Termination Voltage
V
TDATA
_
V
TRCV
_
V
TLDEN
_
V
IH
V
IL
V
DIFF
MAX996_ _DCCQ,
MAX996_ _GCCQ, MAX996_ _LCCQ
-0.2
I
BIAS
To 0.1% of full-scale change (Note 7)
0.85
-0.20
±0.15
1
3.50
+3.10
±1.00
±25
+3.5
±25
µA
µs
V
V
V
µA
V
DIFFERENTIAL CONTROL INPUTS
(DATA_, NDATA_, RCV_, NRCV_, LDEN_, NLDEN_)
Input Termination Resistor
MAX996_ _GCCQ, MAX996_ _LCCQ,
between signal and corresponding
termination voltage input
48
52
Ω
SINGLE-ENDED CONTROL INPUTS
(CS, SCLK, DIN,
RST)
Internal Threshold Reference
Internal Reference Output
Resistance
External Threshold Reference
Input High Voltage
Input Low Voltage
Input Bias Current
SERIAL INTERFACE TIMING
(Figure 4)
SCLK Frequency
SCLK Pulse-Width High
SCLK Pulse-Width Low
CS
Low to SCLK High Setup
CS
High to SCLK High Setup
SCLK High to
CS
High Hold
DIN to SCLK High Setup
DIN to SCLK High Hold
CS
Pulse-Width High
f
SCLK
t
CH
t
CL
t
CSS0
t
CSS1
t
CSH1
t
DS
t
DH
t
CSWH
8
8
3.5
3.5
3.5
3.5
3.5
20
50
MHz
ns
ns
ns
ns
ns
ns
ns
ns
V
THRINT
R
O
V
THR
V
IH
V
IL
I
B
0.43
V
THR
+
0.20
-0.1
1.05
1.25
20
1.73
3.5
V
THR
-
0.20
±25
1.45
V
kΩ
V
V
V
µA
_______________________________________________________________________________________
3
Dual, Low-Power, 500Mbps
ATE Drivers/Comparators with 2mA Load
MAX9961/MAX9962
ELECTRICAL CHARACTERISTICS (continued)
(V
CC
= +9.75V, V
EE
= -5.25V, V
CCO_
= +2.5V, SC1 = SC0 = 0, V
CPHV_
= +7.2V, V
CPLV_
= -2.2V, V
LDH_
= V
LDL_
= 0, V
GS
= 0, T
J
=
+85°C, unless otherwise noted. All temperature coefficients are measured at T
J
= +70°C to +100°C, unless otherwise noted.) (Note 1)
PARAMETER
TEMPERATURE MONITOR
(TEMP)
Nominal Voltage
Temperature Coefficient
Output Resistance
DRIVERS
(Note 8)
DC OUTPUT CHARACTERISTICS
(R
L
≥
10MΩ)
DHV_, DLV_, DTV_ Output Offset
Voltage
DHV_, DLV_, DTV_ Output-Offset
Temperature Coefficient
DHV_, DLV_, DTV_ Gain
DHV_, DLV_, DTV_ Gain
Temperature Coefficient
Linearity Error
DHV_ to DLV_ Crosstalk
DLV_ to DHV_ Crosstalk
DTV_ to DLV_ and DHV_
Crosstalk
DHV_ to DTV_ Crosstalk
DLV_ to DTV_ Crosstalk
DHV_, DTV_, DLV_ DC Power-
Supply Rejection Ratio
Maximum DC Drive Current
DC Output Resistance
DC Output Resistance Variation
Sense Resistance
Force Resistance
Force Capacitance
PSRR
I
DUT
_
R
DUT
_
∆R
DUT
_
R
SENSE
R
FORCE
C
FORCE
V
DLV
_ = 0, V
DHV
_ = 0.1V
Drive-Mode Overshoot
Term-Mode Overshoot
V
DLV
_ = 0, V
DHV
_ = 1V
V
DLV
_ = 0, V
DHV
_ = 3V
(Note 13)
I
DUT
_ = ±30mA (Note 12)
I
DUT
_ = ±1mA to ±8mA
I
DUT
_ = ±1mA to ±40mA
7.50
320
V
DUT
_ = 1.5V, 3V (Note 9)
Full range (Notes 9, 10)
V
DLV
_ = 0, V
DHV
_ = 200mV, 6.5V
V
DHV
_ = 5V, V
DLV
_ = -1.5V, +4.8V
V
DHV
_ = 3V, V
DLV
_ = 0,
V
DTV
_ = -1.5V, +6.5V
V
DTV
_ = 1.5V, V
DLV
_ = 0,
V
DHV
_ = 1.6V, 3V
V
DTV
_ = 1.5V, V
DHV
_ = 3V,
V
DLV
_ = 0V, 1.4V
(Note 11)
40
±60
49
50
0.5
1
10
400
1
30
40
50
0
mV
mV
2.5
13.75
500
±120
51
Av
Measured with V
DHV
_, V
DLV
_,
and V
DTV
_ at 0 and 4.5V
0.960
-35
±5
±15
±2
±2
±2
±3
±3
V
OS
At DUT_ with V
DHV
_, V
DTV
_,
V
DLV
_ independently tested
at +1.5V
MAX996_A
MAX996_B
±65
1.001
±15
mV
±100
µV/°C
V/V
ppm/°C
mV
mV
mV
mV
mV
mV
dB
mA
Ω
Ω
kΩ
Ω
pF
T
J
= +70°C, R
L
≥
10MΩ
3.43
+10
15
V
mV/°C
kΩ
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DYNAMIC OUTPUT CHARACTERISTICS
(Z
L
= 50Ω)
4
_______________________________________________________________________________________