D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
MIC5252
Micrel, Inc.
MIC5252
150mA High PSRR, Low Noise µCap CMOS LDO
General Description
The MIC5252 is an efficient, precise CMOS voltage regulator
optimized for ultra-low-noise applications. It offers 1% initial
accuracy, extremely-low dropout voltage (135mV at 150mA)
and low ground current (typically 90µA). The MIC5252
provides a very-low-noise output, ideal for RF applications
where a clean voltage source is required. The MIC5252 has
a high PSRR even at low supply voltages, critical for battery
operated electronics. A noise bypass pin is also available for
further reduction of output noise.
Designed specifically for handheld and battery-powered
devices, the MIC5252 provides a TTL-logic-compatible en-
able pin. When disabled, power consumption drops nearly
to zero.
The MIC5252 also works with low-ESR ceramic capacitors,
reducing the amount of board space necessary for power
applications, critical in handheld wireless devices.
Key features include current limit, thermal shutdown, faster
transient response, and an active clamp to speed up device
turn-off. The MIC5252 is available in the 6-pin 2mm
×
2mm
MLF™ package and the IttyBitty® SOT-23-5 package in a
wide range of output voltages.
Features
•
•
•
•
•
•
•
•
•
•
•
Input voltage range: 2.7V to 6.0V
PSRR = 50dB @ V
O
+ 0.3V
Ultra-low output noise: 30µV(rms)
Stability with ceramic output capacitors
Ultra-low dropout: 135mV @ 150mA
High output accuracy:
1.0% initial accuracy
2.0% over temperature
Low quiescent current: 90µA
Tight load and line regulation
TTL-Logic-controlled enable input
“Zero” off-mode current
Thermal shutdown and current limit protection
Applications
•
•
•
•
•
Cellular phones and pagers
Cellular accessories
Battery-powered equipment
Laptop, notebook, and palmtop computers
Consumer/personal electronics
Typical Application
C
IN
= 1.0µF
Ceramic
Enable
Shutdown
V
IN
MIC5252-x.xBM5
1
2
3
5
V
OUT
C
OUT
= 1.0µF
Ceramic
V
IN
ENABLE
SHUTDOWN
MIC5252-x.xBML
1
2
3
6
5
4
V
OUT
C
BYP
(optional)
EN
C
OUT
4
EN
EN (pin 3) m be
ay
connected directly
to IN (pin 1).
C
BYP
= 0.01µF
Ultra-Low-Noise Regulator Application
IttyBitty is a registered trademark of Micrel, Inc.
MicroLeadFrame and MLF are trademarks of Amkor Technology.
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
February 2005
1
M9999-020305
MIC5252
Micrel, Inc.
Part Number
Marking
Standard
L618
L625
L628
L62J
L630
L64H
628
62J
630
Pb-Free
L618
L625
L628
L62J
L630
L64H
628
62J
630
Ordering Information
Standard
MIC5252-1.8BM5
MIC5252-2.5BM5
MIC5252-2.8BM5
MIC5252-2.85BM5
MIC5252-3.0BM5
MIC5252-4.75BM5
MIC5252-2.8BML
MIC5252-2.85BML
MIC5252-3.0BML
Pb-Free
MIC5252-1.8YM5
MIC5252-2.5YM5
MIC5252-2.8YM5
MIC5252-2.85YM5
MIC5252-3.0YM5
MIC5252-4.75YM5
MIC5252-2.8YML
MIC5252-2.85YML
MIC5252-3.0YML
Voltage
1.8V
2.5V
2.8V
2.85V
3.0V
4.75V
2.8V
2.85V
3.0V
Junction Temp. Range
-40°C to +125°C
-40°C to +125°C
-40°C to +125°C
-40°C to +125°C
-40°C to +125°C
-40°C to +125°C
-40°C to +125°C
-40°C to +125°C
-40°C to +125°C
Package
SOT-23-5
SOT-23-5
SOT-23-5
SOT-23-5
SOT-23-5
SOT-23-5
6-Pin 2x2 MLF™
6-Pin 2x2 MLF™
6-Pin 2x2 MLF™
Other voltages available. Contact Micrel for details.
Pin Configuration
EN
GND
3
IN
1
2
L6xx
4
5
EN 1
GND 2
OUT
6 BYP
5 NC
4 OUT
BYP
IN 3
MIC5252-x.xBM5
SOT-23-5 (M5)
(Top View)
MIC5252-x.xBML
6-Pin 2mm
×
2mm MLF™ (ML)
(Top View)
Pin Description
Pin Number
SOT-23-5
1
2
3
4
5
–
–
Pin Number
6-MLF™
3
2
1
6
4
5
EP
Pin Name
IN
GND
EN
BYP
OUT
NC
GND
Pin Function
Supply Input.
Ground.
Enable/Shutdown (Input): CMOS compatible input. Logic high = enable;
logic low = shutdown. Do not leave open.
Reference Bypass: Connect external 0.01µF ≤ C
BYP
≤ 1.0µF capacitor to
GND to reduce output noise. May be left open.
Regulator Output.
No internal connection.
Ground: Internally connected to the exposed pad. Connect externally to
GND pin.
M9999-020305
2
February 2005
MIC5252
Micrel, Inc.
Absolute Maximum Ratings
(1)
Supply Input Voltage (V
IN
) ....................................0V to +7V
Enable Input Voltage (V
EN
) ..................................0V to +7V
Power Dissipation (P
D
) ..........................Internally Limited
(3)
Junction Temperature (T
J
) ........................ –40°C to +125°C
Storage Temperature ................................ –65°C to +150°C
Lead Temperature (soldering, 5 sec.) ........................ 260°C
ESD
(4)
............................................................................ 2kV
Operating Ratings
(2)
Input Voltage (V
IN
) .......................................... +2.7V to +6V
Enable Input Voltage (V
EN
) ...................................0V to V
IN
Junction Temperature (T
J
) ........................ –40°C to +125°C
Thermal Resistance
SOT-23
(θ
JA
) ......................................................235°C/W
2x2 MLF™
(θ
JA
) ..................................................90°C/W
Electrical Characteristics
(5)
Symbol
V
O
ΔV
LNR
ΔV
LDR
V
IN
– V
OUT
V
IN
= V
OUT
+ 1V, V
EN
= V
IN;
I
OUT
= 100µA; T
J
= 25°C,
bold
values indicate –40°C ≤ T
J
≤ +125°C; unless noted.
Parameter
Conditions
Min
–1
–3
0.02
0.6
0.1
90
135
0.2
90
117
63
48
48
250
425
30
Output Voltage Accuracy
Line Regulation
Load Regulation
Dropout Voltage
(7)
I
OUT
= 100µA
V
IN
= V
OUT
+ 1V to 6V
I
OUT
= 100µA
Typical
Max
1
3
0.2
1.5
5
150
200
250
1
150
200
Units
%
%
%
%
mV
mV
mV
mV
µA
µA
µA
dB
dB
dB
mA
I
OUT
= 0.1mA to 150mA
(6)
I
OUT
= 100mA
I
OUT
= 150mA
I
Q
Quiescent Current
Ground Pin Current
(8)
Ripple Rejection; I
OUT
= 150mA
I
GND
PSRR
V
EN
≤ 0.4V (shutdown)
I
OUT
= 150mA
I
OUT
= 0mA
f = 10Hz, V
IN
= V
OUT
+ 0.3V
V
OUT
= 0V
f = 10Hz, C
OUT
= 1.0µF, C
BYP
= 0.01µF
I
LIM
Current Limit
Output Voltage Noise
f = 10kHz, V
IN
= V
OUT
+ 0.3V
e
n
µV(rms)
Enable Input
V
IL
C
OUT
= 1.0µF, C
BYP
= 0.01µF,
f = 10Hz to 100kHz
Enable Input Logic-Low Voltage
Enable Input Logic-High Voltage
Enable Input Current
Shutdown Resistance Discharge
V
IH
I
EN
V
IN
= 2.7V to 5.5V, regulator enabled
V
IL
≤ 0.4V, regulator shutdown
V
IH
≥ 1.6V, regulator enabled
V
IN
= 2.7V to 5.5V, regulator shutdown
0.4
1.6
0.01
0.01
500
150
10
1
1
V
V
µA
µA
Ω
°C
°C
Thermal Protection
Thermal Shutdown Temperature
Thermal Shutdown Hysteresis
Notes:
1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. The maximum allowable power dissipation of any T
A
(ambient temperature) is P
D
(max) = (T
J
(max)–T
A
)/θ
JA
. Exceeding the maximum allowable
power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The
θ
JA
of the MIC5252-x.xBM5 (all ver-
sions) is 235°C/W on a PC board. See
”Thermal Considerations”
section for further details.
4. Devices are ESD sensitive. Handling precautions recommended.
5. Specification for packaged product only.
6. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range
from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
7. Dropout Voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differen-
tial. For outputs below 2.7V, dropout voltage is the input-to-output voltage differential with the minimum input voltage 2.7V. Minimum input operating
voltage is 2.7V.
8. Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground pin cur-
rent.
February 2005
3
M9999-020305
MIC5252
Micrel, Inc.
Typical Characteristics
P S R R with B ypas s V ariation
(V
IN
= V
OUT
+ 0.3V )
P S R R with B ypas s C ap
V ariation (V
IN
= V
OUT
+ 1V )
10nF
1µF
P S R R with L oad V ariation
90
80
70
100µA
90
80
70
60
PSRR (dB)
50
40
30
20
10
90
80
70
60
PSRR (dB)
50
40
30
20
10
100nF
1µF
0nF
PSRR (dB)
100nF
60
50
40
30
20
C
OUT
= 1µF C eramic
C
B Y P
= 10nF
V
IN
= V
OUT
+ 1V
V
OUT
= 2.8V
150mA
10nF
0nF
C
OUT
= 1µF C eramic
V
IN
= V
OUT
+ 0.3V
V
OUT
= 2.8V
Load = 150mA
C
OUT
= 1µF C eramic
V
IN
= V
OUT
+ 1V
V
OUT
= 2.8V
Load = 150mA
0
10
10k
100k
1k
100
FREQUENCY (Hz)
1M
0
10
10k
100k
1k
100
FREQUENCY (Hz)
1M
10
10
10k
100k
1k
100
FREQUENCY (Hz)
1M
PSR R
at 100Hz
90
80
70
60
PSRR (dB)
Output V oltage
vs . L oad C urrent
2.85
2.83
2.81
2.79
2.77
2.75
2.73
2.71
2.69
2.67
2.65
0
Output V oltage
vs . T emperature
2.84
2.82
OUTPUT VOLTAGE (V)
2.8
2.78
2.76
2.74
2.72
100µA
OUTPUT VOLTAGE (V)
50
40
30
20
10
0
150mA
C
OUT
= 1µF
C
B Y P
= 10nF
V
OUT
2.8V
2.8V
OUT
20 40 60 80 100 120 140
OUTPUT CURRENT (mA)
0
100
200
300
400
500
600
700
800
900
1000
100µA
2.7
-40 -20 0 20 40 60 80 100 120
TEMPERATURE (°C)
VOLTAGE DROP (mV)
G round C urrent
vs . Output C urrent
140
120
GROUND CURRENT (µA)
GROUND CURRENT (µA)
100
80
60
40
20
0
0
G round C urrent
vs . T emperature
160
140
GROUND CURRENT (µA)
120
100
80
0mA Load
60
40
20
0
-40 -20 0 20 40 60 80 100 120
TEMPERATURE (°C)
120
100
80
60
40
20
G round C urrent
vs . S uppl
y
V oltage
1µA Load
100µA Load
150mA Load
0µA Load
2.8V
OUT
20 40 60 80 100 120 140 160
OUTPUT CURRENT (mA)
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
SUPPLY VOLTAGE (V)
G round C urrent
vs . S uppl
y
V oltage
140
120
GROUND CURRENT (µA)
100
80
60
40
20
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
SUPPLY VOLTAGE (V)
Dropout C harac teris tic s
3
2.5
OUTPUT VOLTAGE (V)
2
1.5
1
0.5
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
SUPPLY VOLTAGE (V)
Dropout
vs . T emperature
200
180
160
140
120
100
80
60
40
2.8V
OUT
20
I
L
= 150mA
0
-40 -20 0 20 40 60 80 100 120
TEMPERATURE (°C)
150mA
150mA Load
M9999-020305
4
DROPOUT VOLTAGE (mV)
10mA Load
100
µ
A
February 2005