Vin=270 V dc ±5%, Iout=24 A, CL=0 µF, free running (see Note 10) unless
otherwise specified
Technical Specification
Group A
Subgroup
(see Note 13)
ISOLATION CHARACTERISTICS
Isolation Voltage
Input RTN to Output RTN
Any Input Pin to Case
Any Output Pin to Case
Isolation Resistance (in rtn to out rtn)
Isolation Resistance (any pin to case)
Isolation Capacitance (in rtn to out rtn)
FEATURE CHARACTERISTICS
Switching Frequency (free running)
Synchronization Input
Frequency Range
Logic Level High
Logic Level Low
Duty Cycle
Synchronization Output
Pull Down Current
Duty Cycle
Enable Control (ENA1 and ENA2)
Off-State Voltage
Module Off Pulldown Current
On-State Voltage
Module On Pin Leakage Current
Pull-Up Voltage
RELIABILITY CHARACTERISTICS
Calculated MTBF (MIL-STD-217F2)
GB @ Tcase = 70ºC
AIF @ Tcase = 70ºC
WEIGHT CHARACTERISTICS
Device Weight
Dielectric strength
500
500
500
100
100
44
500
500
2.0
-0.5
20
20
25
550
600
700
5.5
0.8
80
V
V
V
MΩ
MΩ
nF
kHz
kHz
V
V
%
mA
%
V
µA
V
µA
V
VSYNC OUT = 0.8 V
Output connected to SYNC IN of other MQFL unit
1
1
1
1
1
1
1, 2, 3
1, 2, 3
1, 2, 3
1, 2, 3
See Note 5
See Note 5
See Note 5
1, 2, 3
See Note 5
1, 2, 3
See Note 5
1, 2, 3
75
0.8
80
2
3.2
4.0
20
4.8
Current drain required to ensure module is off
Imax draw from pin allowed with module still on
See Figure A
2600
300
79
10
3
Hrs.
10
3
Hrs.
g
Electrical Characteristics Notes
1. Converter will undergo input over-voltage shutdown.
2. Derate output power to 50% of rated power at Tcase = 135ºC. 135ºC is above specified operating range.
3. High or low state of input voltage must persist for about 200µs to be acted on by the lockout or shutdown circuitry.
4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value.
5. Parameter not tested but guaranteed to the limit specified.
6. Load current transition time ≥ 10 µs.
7. Settling time measured from start of transient to the point where the output voltage has returned to ±1% of its final value.
8. Line voltage transition time ≥ 250 µs.
9. Input voltage rise time e 250 µs.
10. Operating the converter at a synchronization frequency above the free running frequency will slightly reduce the converter’s efficiency and may also cause
a slight reduction in the maximum output current/power available. For more information consult the factory.
11. After a disable or fault event, module is inhibited from restarting for 300 ms. See Shut Down section.
12. SHARE pin outputs a power failure warning pulse during a fault condition. See Current Share section.
13. Only the ES and HB grade products are tested at three temperatures. The C- grade products are tested at one temperature. Please refer to the ESS table
for details.
14. These derating curves apply for the ES and HB grade products. The C- grade product has a maximum case temperature of 70ºC and a maximum junction
temperature rise of 20ºC above TCASE.
15. Converter delivers current into a persisting short circuit for up to 1 second. See Current Limit in the Application Notes section.
16. The specified operating case temperature for ES grade products is -45ºC to 100ºC. The specified operating case temperature for C grade
products is 0ºC to 70ºC
Product# MQFL-270-05S
Phone 1-888-567-9596
www.SynQor.com
Doc.# 005-MQ2750S Rev. G
08/13/13
Page 4
MQFL-270-05S
Output:
5.0V
Current:
24A
Technical Figures
100
95
90
100
95
90
Efficiency (%)
Efficiency (%)
85
80
75
70
65
60
0
4
8
12
16
20
24
155 Vin
270 Vin
400 Vin
85
80
75
70
65
60
-55ºC
25ºC
125ºC
155 Vin
270 Vin
400 Vin
Load Current (A)
Case Temperature (ºC)
Figure 1:
Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at T
CASE
=25°C.
20
18
16
Figure 2:
Efficiency at nominal output voltage and 60% rated power vs.
case temperature for input voltage of 155V, 270V and 400V.
20
18
16
Power Dissipation (W)
14
12
10
8
6
4
2
0
0
4
8
12
16
20
24
155 Vin
270 Vin
400 Vin
Power Dissipation (W)
14
12
10
8
6
4
2
0
-55ºC
25ºC
125ºC
155 Vin
270 Vin
400 Vin
Load Current (A)
Case Temperature (ºC)
Figure 3:
Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at Tcase=25°C.
32
28
24
20
160
140
120
100
80
60
= 105ºC
= 125ºC
= 145ºC
40
20
0
25
45
65
85
105
125
145
Figure 4:
Power dissipation at nominal output voltage and 60% rated
power vs. case temperature for input voltage of 155V, 270V and 400V.
6
5
16
12
8
4
0
Output Voltage (V)
4
Pout (W)
Iout (A)
3
2
1
270 Vin
0
0
5
10
Case Temperature (ºC)
Load Current (A)
15
20
25
30
Figure 5:
Output Current / Output Power derating curve as a
function of Tcase and the Maximum desired power MOSFET junction
temperature (see Note 14). Vin = 270V
Product# MQFL-270-05S
Phone 1-888-567-9596
Figure 6:
Output voltage vs. load current showing typical current limit
curves. See Current Limit section in the Application Notes.
ADI 的精密ADC用差分驱动器
差分输入ADC特性
目前许多高性能ADC设计均采用差分输入。全差分ADC设计具有共模抑制性能出色、二阶失真产物较少、直流调整算法简单的优点。尽管可以单端驱动,但全差分驱动器通常可以优化整体性能。
差分输入ADC的一种最普通的驱动方法是使用变压器。不过,因为许多应用中频率响应必须延伸至直流,从而无法使用变压器来驱动。这类情况就需要使用差分驱动器。本教程...[详细]