Freescale Semiconductor
Technical Data
Document Number: MRF6VP11KH
Rev. 8, 9/2012
RF Power Field Effect Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
Designed primarily for pulse wideband applications with frequencies up to
150 MHz. Devices are unmatched and are suitable for use in industrial,
medical and scientific applications.
•
Typical Pulse Performance at 130 MHz: V
DD
= 50 Volts, I
DQ
= 150 mA,
P
out
= 1000 Watts Peak (200 W Avg.), Pulse Width = 100
μsec,
Duty Cycle = 20%
Power Gain — 26 dB
Drain Efficiency — 71%
•
Capable of Handling 10:1 VSWR, @ 50 Vdc, 130 MHz, 1000 Watts Peak
Power
Features
•
•
•
•
•
•
Characterized with Series Equivalent Large--Signal Impedance Parameters
CW Operation Capability with Adequate Cooling
Qualified Up to a Maximum of 50 V
DD
Operation
Integrated ESD Protection
Designed for Push--Pull Operation
Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
•
In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13 inch Reel.
R5 Suffix = 50 Units, 56 mm Tape Width, 13 Inch Reel.
MRF6VP11KHR6
MRF6VP11KGSR5
1.8-
-150 MHz, 1000 W, 50 V
LATERAL N-
-CHANNEL
BROADBAND
RF POWER MOSFETs
CASE 375D-
-05
STYLE 1
NI-
-1230-
-4
MRF6VP11KHR6
CASE 2282-
-02
NI-
-1230S- GULL
-4
MRF6VP11KGSR5
PARTS ARE PUSH-
-PULL
RF
inA
/V
GSA
3
1 RF
outA
/V
DSA
Table 1. Maximum Ratings
Rating
Drain--Source Voltage
Gate--Source Voltage
Storage Temperature Range
Case Operating Temperature
Operating Junction Temperature
(1,2)
Symbol
V
DSS
V
GS
T
stg
T
C
T
J
Value
--0.5, +110
--6.0, +10
-- 65 to +150
150
225
Unit
Vdc
Vdc
°C
°C
°C
(Top View)
RF
inB
/V
GSB
4
2 RF
outB
/V
DSB
Figure 1. Pin Connections
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
CW: Case Temperature 67°C, 1000 W CW, 100 MHz
Thermal Impedance, Junction to Case
Pulse: Case Temperature 80°C, 1000 W Peak, 100
μsec
Pulse Width, 20% Duty Cycle
Symbol
R
θJC
Z
θJC
Value
(2,3)
0.13
0.03
Unit
°C/W
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955,
Thermal Measurement Methodology of RF Power Amplifiers.
Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
©
Freescale Semiconductor, Inc., 2008--2010, 2012. All rights reserved.
MRF6VP11KHR6 MRF6VP11KGSR5
1
RF Device Data
Freescale Semiconductor, Inc.
Table 3. ESD Protection Characteristics
Test Methodology
Human Body Model (per JESD22--A114)
Machine Model (per EIA/JESD22--A115)
Charge Device Model (per JESD22--C101)
Class
2, passes 2000 V
A, passes 125 V
IV, passes 2000 V
Table 4. Electrical Characteristics
(T
A
= 25°C unless otherwise noted)
Characteristic
Off Characteristics
(1)
Gate--Source Leakage Current
(V
GS
= 5 Vdc, V
DS
= 0 Vdc)
Drain--Source Breakdown Voltage
(I
D
= 300 mA, V
GS
= 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(V
DS
= 50 Vdc, V
GS
= 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(V
DS
= 100 Vdc, V
GS
= 0 Vdc)
On Characteristics
Gate Threshold Voltage
(1)
(V
DS
= 10 Vdc, I
D
= 1600
μAdc)
Gate Quiescent Voltage
(2)
(V
DD
= 50 Vdc, I
D
= 150 mAdc, Measured in Functional Test)
Drain--Source On--Voltage
(1)
(V
GS
= 10 Vdc, I
D
= 4 Adc)
Dynamic Characteristics
(1)
Reverse Transfer Capacitance
(V
DS
= 50 Vdc
±
30 mV(rms)ac @ 1 MHz, V
GS
= 0 Vdc)
Output Capacitance
(V
DS
= 50 Vdc
±
30 mV(rms)ac @ 1 MHz, V
GS
= 0 Vdc)
Input Capacitance
(V
DS
= 50 Vdc, V
GS
= 0 Vdc
±
30 mV(rms)ac @ 1 MHz)
C
rss
C
oss
C
iss
—
—
—
3.3
147
506
—
—
—
pF
pF
pF
V
GS(th)
V
GS(Q)
V
DS(on)
1
1.5
—
1.63
2.2
0.28
3
3.5
—
Vdc
Vdc
Vdc
I
GSS
V
(BR)DSS
I
DSS
I
DSS
—
110
—
—
—
—
—
—
10
—
100
5
μAdc
Vdc
μAdc
mA
Symbol
Min
Typ
Max
Unit
Functional Tests
(2,3)
(In Freescale Test Fixture, 50 ohm system) V
DD
= 50 Vdc, I
DQ
= 150 mA, P
out
= 1000 W Peak (200 W Avg.), f = 130
MHz, 100
μsec
Pulse Width, 20% Duty Cycle
Power Gain
Drain Efficiency
Input Return Loss
G
ps
η
D
IRL
24
69
—
26
71
--16
28
—
--9
dB
%
dB
1. Each side of device measured separately.
2. Measurements made with device in push--pull configuration.
3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GS) parts.
MRF6VP11KHR6 MRF6VP11KGSR5
2
RF Device Data
Freescale Semiconductor, Inc.
V
BIAS
+
C1
+
C2
+
B1
L1
R1
R2
L3
+
C15
+
V
SUPPLY
+
C20
C3
C4
C5
C6
C7
C8
C9
C10
C11
C21
Z10
C13
C14
C16 C17 C18 C19
Z8
Z4
RF
INPUT
Z1
Z2
L2
Z3
J1
C12
T1
Z5
Z7
Z9
Z6
Z12
Z14
Z16
RF
OUTPUT
DUT
Z11
Z18
C23
Z13
C24
Z15
C25
Z17
T2
C22
J2
Z19
C26
Z1
Z2*
Z3*
Z4, Z5
Z6, Z7, Z8, Z9
Z10, Z11
0.175″ x 0.082″ Microstrip
1.461″ x 0.082″ Microstrip
0.080″ x 0.082″ Microstrip
0.133″ x 0.193″ Microstrip
0.500″ x 0.518″ Microstrip
0.102″ x 0.253″ Microstrip
Z12, Z13
Z14, Z15
Z16*, Z17*
Z18
Z19
0.206″ x 0.253″ Microstrip
0.116″ x 0.253″ Microstrip
0.035″ x 0.253″ Microstrip
0.275″ x 0.082″ Microstrip
0.845″ x 0.082″ Microstrip
*Line length includes microstrip bends.
Figure 2. MRF6VP11KHR6 Test Circuit Schematic
Table 5. MRF6VP11KHR6 Test Circuit Component Designations and Values
Part
B1
C1
C2
C3
C4, C9, C17
C5, C16
C6, C15
C7
C8
C10, C11, C13, C14
C12
C18, C19, C20
C21, C22
C23
C24, C25
C26
J1, J2
L1
L2
L3*
R1
R2
T1
T2
PCB
*L3 is wrapped around R2.
Description
95
Ω,
100 MHz Long Ferrite Bead
47
μF,
50 V Electrolytic Capacitor
22
μF,
35 V Tantalum Capacitor
10
μF,
35 V Tantalum Capacitor
10K pF Chip Capacitors
20K pF Chip Capacitors
0.1
μF,
50 V Chip Capacitors
2.2
μF,
50 V Chip Capacitor
0.22
μF,
100 V Chip Capacitor
1000 pF Chip Capacitors
18 pF Chip Capacitor
470
μF,
63 V Electrolytic Capacitors
47 pF Chip Capacitors
75 pF Chip Capacitor
100 pF Chip Capacitors
33 pF Chip Capacitor
Jumpers from PCB to T1 and T2
82 nH Inductor
47 nH Inductor
10 Turn, 18 AWG Inductor, Hand Wound
1 KΩ, 1/4 W Carbon Leaded Resistor
20
Ω,
3 W Chip Resistor
Balun
Balun
0.030″,
ε
r
= 2.55
Part Number
2743021447
476KXM050M
T491X226K035AT
T491D106K035AT
ATC200B103KT50XT
ATC200B203KT50XT
CDR33BX104AKYS
C1825C225J5RAC
C1825C223K1GAC
ATC100B102JT50XT
ATC100B180JT500XT
MCGPR63V477M13X26--RH
ATC100B470JT500XT
ATC100B750JT500XT
ATC100B101JT500XT
ATC100B330JT500XT
Copper Foil
1812SMS--82NJLC
1812SMS--47NJLC
Copper Wire
MCCFR0W4J0102A50
CPF320R000FKE14
TUI--9
TUO--4
CuClad 250GX--0300--55--22
Multicomp
Vishay
Comm Concepts
Comm Concepts
Arlon
CoilCraft
CoilCraft
Manufacturer
Fair--Rite
Illinois Cap
Kemet
Kemet
ATC
ATC
Kemet
Kemet
Kemet
ATC
ATC
Multicomp
ATC
ATC
ATC
ATC
MRF6VP11KHR6 MRF6VP11KGSR5
RF Device Data
Freescale Semiconductor, Inc.
3
C1
C4
C5
C6
C17
C16
C15
C19
B1
C2 C3
C7
C8
C9
C11
J1
L2
C12
R1
L1
C18
C20
C14
C21
T1
C24
C25
CUT OUT AREA
C23
C22
C26
J2
C13
T2
L3, R2*
C10
MRF6VP11KH
Rev. 3
*
L3 is wrapped around R2.
Figure 3. MRF6VP11KHR6 Test Circuit Component Layout
MRF6VP11KHR6 MRF6VP11KGSR5
4
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
1000
C
iss
C
oss
100
Measured with
±30
mV(rms)ac @ 1 MHz
V
GS
= 0 Vdc
I
D
, DRAIN CURRENT (AMPS)
100
C, CAPACITANCE (pF)
T
J
= 200°C
T
J
= 150°C
T
J
= 175°C
10
10
C
rss
1
0
10
20
30
40
50
V
DS
, DRAIN--SOURCE VOLTAGE (VOLTS)
1
1
T
C
= 25°C
10
V
DS
, DRAIN--SOURCE VOLTAGE (VOLTS)
100
Note:
Each side of device measured separately.
Figure 4. Capacitance versus Drain-
-Source Voltage
27
26
G
ps
, POWER GAIN (dB)
25
24
23
η
D
22
21
20
10
V
DD
= 50 Vdc, I
DQ
= 150 mA, f = 130 MHz
Pulse Width = 100
μsec,
Duty Cycle = 20%
100
P
out
, OUTPUT POWER (WATTS) PEAK
1000
30
20
G
ps
80
70
η
D,
DRAIN EFFICIENCY (%)
P
out
, OUTPUT POWER (dBm)
60
50
40
65
64
63
62
61
60
59
58
57
56
30
Note:
Each side of device measured separately.
Figure 5. DC Safe Operating Area
P3dB = 61.23 dBm (1327.39 W)
P1dB = 60.57 dBm (1140.24 W)
Ideal
Actual
V
DD
= 50 Vdc, I
DQ
= 150 mA, f = 130 MHz
Pulse Width = 100
μsec,
Duty Cycle = 20%
31
32
33
34
35
36
37
38
39
10
2000
P
in
, INPUT POWER (dBm) PEAK
Figure 6. Power Gain and Drain Efficiency
versus Output Power
32
I
DQ
= 6000 mA
G
ps
, POWER GAIN (dB)
G
ps
, POWER GAIN (dB)
28
3600 mA
1500 mA
750 mA
24
150 mA
20
V
DD
= 50 Vdc, f = 130 MHz
Pulse Width = 100
μsec,
Duty Cycle = 20%
10
100
P
out
, OUTPUT POWER (WATTS) PEAK
1000
2000
12
0
375 mA
24
28
Figure 7. Output Power versus Input Power
20
V
DD
= 30 V
16
35 V
40 V
45 V
50 V
16
I
DQ
= 150 mA, f = 130 MHz
Pulse Width = 100
μsec
Duty Cycle = 20%
200
400
600
800
1000
1200
1400
1600
P
out
, OUTPUT POWER (WATTS) PEAK
Figure 8. Power Gain versus Output Power
Figure 9. Power Gain versus Output Power
MRF6VP11KHR6 MRF6VP11KGSR5
RF Device Data
Freescale Semiconductor, Inc.
5