首页 > 器件类别 > 存储

MTA36ASF4G72LZ-2G6D1

MODULE DDR4 32GB LRDIMM

器件类别:存储   

厂商名称:Micron Technology

厂商官网:http://www.mdtic.com.tw/

器件标准:

下载文档
器件参数
参数名称
属性值
存储器类型
DDR4 SDRAM
存储容量
32GB
速度
2666MT/s
封装/外壳
288-LRDIMM
文档预览
32GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM
Features
DDR4 SDRAM LRDIMM
MTA36ASF4G72LZ – 32GB
Features
• DDR4 functionality and operations supported as
defined in the component data sheet
• 288-pin, command/address/control registered, data
buffered dual in-line, load reduced memory module
(LRDIMM)
• Fast data transfer rates: PC4-2666, PC4-2400
• 32GB (4 Gig x 72)
• V
DD
= 1.20V (NOM)
• V
PP
= 2.5V (NOM)
• V
DDSPD
= 2.5V (NOM)
• Supports ECC error detection and correction
• Nominal and dynamic on-die termination (ODT) for
data, strobe, and mask signals
• Low-power auto self refresh (LPASR)
• On-die internal, adjustable, V
REFDQ
generation
• Dual-rank
• On-board I
2
C temperature sensor with integrated
serial presence-detect (SPD) EEPROM
• 16 internal banks; 4 groups of 4 banks each
• Fixed burst chop (BC) of 4 and burst length (BL) of 8
via the mode register set (MRS)
• Selectable BC4 or BL8 on-the-fly (OTF)
• Gold edge contacts
• Halogen-free
• Fly-by topology
• Multiplexed command, and address bus
• Terminated control, command and address bus
Table 1: Key Timing Parameters
Data Rate (MT/s)
Industry
Speed Nomen-
Grade clature
-2G6
-2G4
-2G3
-2G1
PC4-2666
PC4-2400
PC4-2400
PC4-2133
CL =
20,
CL =
19
2666
Figure 1: 288-Pin LRDIMM (MO-309, R/C-B, R/C-
B1)
Module height: 31.25mm (1.23in)
Options
• Operating temperature
– Commercial (0°C
T
OPER
95°C)
• Package
– 288-pin DIMM (halogen-free)
• Frequency/CAS latency
– 0.75ns @ CL = 19 (DDR4-2666)
– 0.83ns @ CL = 17 (DDR4-2400)
Marking
None
Z
-2G6
-2G3
CL =
18
2666
2400
2400
CL =
17
2400
2400
2400
CL =
16
2133
2400
2133
2133
CL =
15
2133
2133
2133
2133
CL =
14
1866
1866
1866
1866
CL = CL =
13
12
1866 1600
1866 1600
1866 1600
1866 1600
CL =
11
1600
1600
1600
1600
CL =
10
1333
1333
t
RCD
t
RP
t
RC
CL = 9 (ns)
1333
1333
(ns)
(ns)
46.16
45.32
46.16
46.5
14.16 14.16
13.32 13.32
14.16 14.16
13.5
13.5
09005aef863a8960
asf36c4gx72lz.pdf - Rev. D 8/16 EN
1
Products and specifications discussed herein are subject to change by Micron without notice.
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2015 Micron Technology, Inc. All rights reserved.
32GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM
Features
Table 2: Addressing
Parameter
Row address
Column address
Device bank group address
Device bank address per group
Device configuration
Module rank address
32GB
128K A[16:0]
1K A[9:0]
4 BG[1:0]
4 BA[1:0]
8Gb (2 Gig x 4), 16 banks
2 CS_n[1:0]
Table 3: Part Numbers and Timing Parameters – 32GB Modules
Base device: MT40A2G4,
1
8Gb DDR4 SDRAM
Module
Part Number
2
Density
Configuration
MTA36ASF4G72LZ-2G6__
MTA36ASF4G72LZ-2G3__
Notes:
32GB
32GB
4 Gig x 72
4 Gig x 72
Module
Bandwidth
21.3 GB/s
19.2 GB/s
Memory Clock/
Data Rate
0.75ns/2666 MT/s
0.83ns/2400 MT/s
Clock Cycles
(CL-
t
RCD-
t
RP)
19-19-19
17-17-17
1. The data sheet for the base device can be found on micron.com.
2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions.
Consult factory for current revision codes. Example: MTA36ASF4G72LZ-2G6D1.
09005aef863a8960
asf36c4gx72lz.pdf - Rev. D 8/16 EN
2
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2015 Micron Technology, Inc. All rights reserved.
32GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM
Pin Assignments
Pin Assignments
Table 4: Pin Assignments
288-Pin DDR4 LRDIMM Front
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Symbol
NC
V
SS
DQ4
V
SS
DQ0
V
SS
DQS9_t
DQS09_c
V
SS
DQ6
V
SS
DQ2
V
SS
DQ12
V
SS
DQ8
V
SS
DQS10_t
DQS10_c
V
SS
DQ14
V
SS
DQ10
V
SS
DQ20
V
SS
DQ16
V
SS
DQS11_t
DQS11_c
V
SS
DQ22
V
SS
DQ18
V
SS
DQ28
Pin
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Symbol
V
SS
DQ24
V
SS
DQS12_t
DQS12-c
V
SS
DQ30
V
SS
DQ26
V
SS
CB4
V
SS
CB0
V
SS
DQS17_t
DQS17_c
V
SS
CB6
V
SS
CB2
V
SS
RESET_n
V
DD
CKE0
V
DD
ACT_n
BG0
V
DD
A12
A9
V
DD
A8
A6
V
DD
A3
A1
Pin
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
Symbol
V
DD
CK0_t
CK0_c
V
DD
V
TT
EVENT_n
A0
V
DD
BA0
RAS_n/
A16
V
DD
S0_n
V
DD
CAS_n/
A15
ODT0
V
DD
S1_n
V
DD
ODT1
V
DD
S2_n
V
SS
DQ36
V
SS
DQ32
V
SS
DQS13_t
DQS13_c
V
SS
DQ38
V
ss
DQ34
V
SS
DQ44
V
SS
DQ40
Pin
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
Symbol
V
ss
DQS14_t
DQS14_c
V
SS
DQ46
V
SS
DQ42
V
SS
DQ52
V
SS
DQ48
V
SS
DQS15_t
DQS15_c
V
SS
DQ54
V
SS
DQ50
V
SS
DQ60
V
SS
DQ56
V
SS
DQS16_t
DQS16_c
V
SS
DQ62
V
SS
DQ58
V
SS
SA0
SA1
SCL
V
PP
V
PP
NC
Pin
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Symbol
NC
V
REFCA
V
SS
DQ5
V
SS
DQ1
V
SS
DQS0_c
DQS0_t
V
SS
DQ7
V
SS
DQ3
V
SS
DQ13
V
SS
DQ9
V
SS
DQS1_c
DQS1_t
V
SS
DQ15
V
SS
DQ11
V
SS
DQ21
V
SS
DQ17
V
SS
DQS2_c
DQS2_t
V
SS
DQ23
V
SS
DQ19
V
SS
288-Pin DDR4 LRDIMM Back
Pin
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
Symbol
DQ29
V
SS
DQ25
V
SS
DQS3_c
DQS3_t
V
SS
DQ31
V
SS
DQ27
V
SS
CB5
V
SS
CB1
V
SS
DQS8_c
DQS8_t
V
SS
CB7
V
SS
CB3
V
SS
CKE1
V
DD
NC
V
DD
BG1
ALERT_n
V
DD
A11
A7
V
DD
A5
A4
V
DD
A2
Pin
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
Symbol
V
DD
CK1_t
CK1_c
V
DD
V
TT
PARITY
V
DD
BA1
A10_AP
V
DD
NC
WE_n/
A14
V
DD
NC
V
DD
A13
V
DD
A17
NF
V
DD
S3_n
SA2
V
SS
DQ37
V
SS
DQ33
V
SS
DQS4_c
DQS4_t
V
SS
DQ39
V
SS
DQ35
V
SS
DQ45
V
SS
Pin
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
Symbol
DQ41
V
SS
DQS5_c
DQS5_t
V
SS
DQ47
V
SS
DQ43
V
SS
DQ53
V
SS
DQ49
V
SS
DQS6_c
DQS6_t
V
SS
DQ55
V
SS
DQ51
V
SS
DQ61
V
SS
DQ57
V
SS
DQS7_c
DQS7_t
V
SS
DQ63
V
SS
DQ59
V
SS
V
DDSPD
SDA
V
PP
V
PP
V
PP
09005aef863a8960
asf36c4gx72lz.pdf - Rev. D 8/16 EN
3
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2015 Micron Technology, Inc. All rights reserved.
32GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM
Pin Descriptions
Pin Descriptions
The pin description table below is a comprehensive list of all possible pins for DDR4
modules. All pins listed may not be supported on this module. See Functional Block Di-
agram for pins specific to this module.
Table 5: Pin Descriptions
Symbol
Ax
Type
Input
Description
Address inputs:
Provide the row address for ACTIVATE commands and the column address for
READ/WRITE commands in order to select one location out of the memory array in the respec-
tive bank (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, and RAS_n/A16 have additional functions;
see individual entries in this table). The address inputs also provide the op-code during the
MODE REGISTER SET command. A17 is only defined for x4 SDRAM.
Auto precharge:
A10 is sampled during READ and WRITE commands to determine whether an
auto precharge should be performed on the accessed bank after a READ or WRITE operation
(HIGH = auto precharge; LOW = no auto precharge). A10 is sampled during a PRECHARGE com-
mand to determine whether the precharge applies to one bank (A10 LOW) or all banks (A10
HIGH). If only one bank is to be precharged, the bank is selected by the bank group and bank
addresses.
Burst chop:
A12/BC_n is sampled during READ and WRITE commands to determine if burst
chop (on-the-fly) will be performed (HIGH = no burst chop; LOW = burst- chopped). See Com-
mand Truth Table in the DDR4 component data sheet.
Command input:
ACT_n defines the ACTIVATE command being entered along with CS_n. The
input into RAS_n/A16, CAS_n/A15, and WE_n/A14 are considered as row address A16, A15, and
A14. See Command Truth Table.
Bank address inputs:
Define the bank (with a bank group) to which an ACTIVATE, READ,
WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be
accessed during a MODE REGISTER SET command.
Bank group address inputs:
Define the bank group to which a REFRESH, ACTIVATE, READ,
WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be
accessed during a MODE REGISTER SET command. BG[1:0] are used in the x4 and x8 configura-
tions. x16-based SDRAM only has BG0.
Chip ID:
These inputs are used only when devices are stacked; that is, 2H, 4H, and 8H stacks for
x4 and x8 configurations using through-silicon vias (TSVs). These pins are not used in the x16
configuration. Some DDR4 modules support a traditional DDP package, which uses CS1_n,
CKE1, and ODT1 to control the second die. All other stack configurations, such as a 4H or 8H,
are assumed to be single-load (master/slave) type configurations where C0, C1, and C2 are used
as chip ID selects in conjunction with a single CS_n, CKE, and ODT. Chip ID is considered part of
the command code.
Clock:
Differential clock inputs. All address, command, and control input signals are sampled
on the crossing of the positive edge of CK_t and the negative edge of CK_c.
Clock enable:
CKE HIGH activates and CKE LOW deactivates the internal clock signals, device
input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and
SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is
asynchronous for self refresh exit. After V
REFCA
has become stable during the power-on and ini-
tialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE
must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK_t,
CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE
and RESET_n) are disabled during self refresh.
Chip select:
All commands are masked when CS_n is registered HIGH. CS_n provides external
rank selection on systems with multiple ranks. CS_n is considered part of the command code
(CS2_n and CS3_n are not used on UDIMMs).
A10/AP
Input
A12/BC_n
Input
ACT_n
Input
BAx
Input
BGx
Input
C0, C1, C2
(RDIMM/LRDIMM on-
ly)
Input
CKx_t
CKx_c
CKEx
Input
Input
CSx_n
Input
09005aef863a8960
asf36c4gx72lz.pdf - Rev. D 8/16 EN
4
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2015 Micron Technology, Inc. All rights reserved.
32GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM
Pin Descriptions
Table 5: Pin Descriptions (Continued)
Symbol
ODTx
Type
Input
Description
On-die termination:
ODT (registered HIGH) enables termination resistance internal to the
DDR4 SDRAM. When enabled, ODT (R
TT
) is applied only to each DQ, DQS_t, DQS_c, DM_n/
DBI_n/TDQS_t, and TDQS_c signal for x4 and x8 configurations (when the TDQS function is ena-
bled via the mode register). For the x16 configuration, R
TT
is applied to each DQ, DQSU_t,
DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode
registers are programmed to disable R
TT
.
Parity for command and address:
This function can be enabled or disabled via the mode
register. When enabled in MR5, the DRAM calculates parity with ACT_n, RAS_n/A16, CAS_n/A15,
WE_n/A14, BG[1:0], BA[1:0], A[16:0]. Input parity should be maintained at the rising edge of the
clock and at the same time as command and address with CS_n LOW.
Command inputs:
RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n) define the com-
mand and/or address being entered and have multiple functions. For example, for activation
with ACT_n LOW, these are addresses like A16, A15, and A14, but for a non-activation com-
mand with ACT_n HIGH, these are command pins for READ, WRITE, and other commands de-
fined in Command Truth Table.
Active LOW asynchronous reset:
Reset is active when RESET_n is LOW and inactive when RE-
SET_n is HIGH. RESET_n must be HIGH during normal operation.
Serial address inputs:
Used to configure the temperature sensor/SPD EEPROM address range
on the I
2
C bus.
Serial clock for temperature sensor/SPD EEPROM:
Used to synchronize communication to
and from the temperature sensor/SPD EEPROM on the I
2
C bus.
Data input/output and check bit input/output:
Bidirectional data bus. DQ represents
DQ[3:0], DQ[7:0], and DQ[15:0] for the x4, x8, and x16 configurations, respectively. If cyclic re-
dundancy checksum (CRC) is enabled via the mode register, the CRC code is added at the end of
the data burst. Any one or all of DQ0, DQ1, DQ2, or DQ3 may be used for monitoring of inter-
nal V
REF
level during test via mode register setting MR[4] A[4] = HIGH; training times change
when enabled.
Input data mask and data bus inversion:
DM_n is an input mask signal for write data. Input
data is masked when DM_n is sampled LOW coincident with that input data during a write ac-
cess. DM_n is sampled on both edges of DQS. DM is multiplexed with the DBI function by the
mode register A10, A11, and A12 settings in MR5. For a x8 device, the function of DM or TDQS
is enabled by the mode register A11 setting in MR1. DBI_n is an input/output identifying
whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/
output after inversion inside the DDR4 device and not inverted if DBI_n is HIGH. TDQS is only
supported in x8 SDRAM configurations (TDQS is not valid for UDIMMs).
Serial Data:
Bidirectional signal used to transfer data in or out of the EEPROM or EEPROM/TS
combo device.
Data strobe:
Output with read data, input with write data. Edge-aligned with read data, cen-
tered-aligned with write data. For x16 configurations, DQSL corresponds to the data on
DQ[7:0], and DQSU corresponds to the data on DQ[15:8]. For the x4 and x8 configurations, DQS
corresponds to the data on DQ[3:0] and DQ[7:0], respectively. DDR4 SDRAM supports a differen-
tial data strobe only and does not support a single-ended data strobe.
Alert output:
Possesses functions such as CRC error flag and command and address parity error
flag as output signal. If a CRC error occurs, ALERT_n goes LOW for the period time interval and
returns HIGH. If an error occurs during a command address parity check, ALERT_n goes LOW un-
til the on-going DRAM internal recovery transaction is complete. During connectivity test mode,
this pin functions as an input. Use of this signal is system-dependent. If not connected as signal,
ALERT_n pin must be connected to V
DD
on DIMMs.
Temperature event:
The EVENT_n pin is asserted by the temperature sensor when critical tem-
perature thresholds have been exceeded. This pin has no function (NF) on modules without
temperature sensors.
PARITY
Input
RAS_n/A16
CAS_n/A15
WE_n/A14
Input
RESET_n
SAx
SCL
DQx, CBx
CMOS Input
Input
Input
I/O
DM_n/DBI_n/
TDQS_t (DMU_n,
DBIU_n), (DML_n/
DBIl_n)
I/O
SDA
DQS_t
DQS_c
DQSU_t
DQSU_c
DQSL_t
DQSL_c
ALERT_n
I/O
I/O
Output
EVENT_n
Output
09005aef863a8960
asf36c4gx72lz.pdf - Rev. D 8/16 EN
5
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2015 Micron Technology, Inc. All rights reserved.
查看更多>
参数对比
与MTA36ASF4G72LZ-2G6D1相近的元器件有:MTA36ASF4G72LZ-2G3B1。描述及对比如下:
型号 MTA36ASF4G72LZ-2G6D1 MTA36ASF4G72LZ-2G3B1
描述 MODULE DDR4 32GB LRDIMM MODULE DDR4 SDRAM 32GB 288LRDIMM
存储器类型 DDR4 SDRAM DDR4 SDRAM
存储容量 32GB 32GB
速度 2666MT/s 2400MT/s
封装/外壳 288-LRDIMM 288-LRDIMM
热门器件
热门资源推荐
器件捷径:
00 01 02 03 04 05 06 07 08 09 0A 0C 0F 0J 0L 0M 0R 0S 0T 0Z 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 1H 1K 1M 1N 1P 1S 1T 1V 1X 1Z 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 2G 2K 2M 2N 2P 2Q 2R 2S 2T 2W 2Z 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 3G 3H 3J 3K 3L 3M 3N 3P 3R 3S 3T 3V 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4M 4N 4P 4S 4T 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5E 5G 5H 5K 5M 5N 5P 5S 5T 5V 60 61 62 63 64 65 66 67 68 69 6A 6C 6E 6F 6M 6N 6P 6R 6S 6T 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7M 7N 7P 7Q 7V 7W 7X 80 81 82 83 84 85 86 87 88 89 8A 8D 8E 8L 8N 8P 8S 8T 8W 8Y 8Z 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9F 9G 9H 9L 9S 9T 9W
需要登录后才可以下载。
登录取消