首页 > 器件类别 > 存储 > 存储

MX29F040PC-90G

4M-bit [512kx8] cmos equal sector flash memory

器件类别:存储    存储   

厂商名称:Macronix

厂商官网:http://www.macronix.com/en-us/Pages/default.aspx

器件标准:

下载文档
器件参数
参数名称
属性值
是否Rohs认证
符合
零件包装代码
DIP
包装说明
DIP, DIP32,.6
针数
32
Reach Compliance Code
unknow
ECCN代码
EAR99
最长访问时间
90 ns
命令用户界面
YES
数据轮询
YES
耐久性
100000 Write/Erase Cycles
JESD-30 代码
R-PDIP-T32
长度
41.91 mm
内存密度
4194304 bi
内存集成电路类型
FLASH
内存宽度
8
功能数量
1
部门数/规模
8
端子数量
32
字数
524288 words
字数代码
512000
工作模式
ASYNCHRONOUS
最高工作温度
70 °C
最低工作温度
组织
512KX8
封装主体材料
PLASTIC/EPOXY
封装代码
DIP
封装等效代码
DIP32,.6
封装形状
RECTANGULAR
封装形式
IN-LINE
并行/串行
PARALLEL
峰值回流温度(摄氏度)
NOT SPECIFIED
电源
5 V
编程电压
5 V
认证状态
Not Qualified
座面最大高度
4.9 mm
部门规模
64K
最大待机电流
0.000005 A
最大压摆率
0.03 mA
最大供电电压 (Vsup)
5.5 V
最小供电电压 (Vsup)
4.5 V
标称供电电压 (Vsup)
5 V
表面贴装
NO
技术
CMOS
温度等级
COMMERCIAL
端子形式
THROUGH-HOLE
端子节距
2.54 mm
端子位置
DUAL
处于峰值回流温度下的最长时间
NOT SPECIFIED
切换位
YES
类型
NOR TYPE
宽度
15.24 mm
Base Number Matches
1
文档预览
MX29F040
4M-BIT [512KX8] CMOS EQUAL SECTOR FLASH MEMORY
FEATURES
• 524,288 x 8 only
• Single power supply operation
- 5.0V only operation for read, erase and program op-
eration
• Fast access time: 55/70/90/120ns
• Low power consumption
- 30mA maximum active current(5MHz)
- 1uA typical standby current
• Command register architecture
- Byte Programming (7us typical)
- Sector Erase
8 equal sectors of 64K-Byte each
• Auto Erase (chip & sector) and Auto Program
- Automatically erase any combination of sectors with
Erase Suspend capability.
- Automatically program and verify data at specified
address
• Erase suspend/Erase Resume
- Suspends an erase operation to read data from, or
program data to, another sector that is not being
erased, then resumes the erase.
Status Reply
- Data polling & Toggle bit for detection of program
and erase cycle completion.
Sector protect/unprotect for 5V only system or 5V/
12V system.
Sector protection
- Hardware method to disable any combination of
sectors from program or erase operations
100,000 minimum erase/program cycles
Latch-up protected to 100mA from -1V to VCC+1V
Low VCC write inhibit is equal to or less than 3.2V
Package type:
- 32-pin PLCC, TSOP or PDIP
Compatibility with JEDEC standard
- Pinout and software compatible with single-power
supply Flash
20 years data retention
GENERAL DESCRIPTION
The MX29F040 is a 4-mega bit Flash memory organized
as 512K bytes of 8 bits. MXIC's Flash memories offer
the most cost-effective and reliable read/write non-vola-
tile random access memory. The MX29F040 is pack-
aged in 32-pin PLCC, TSOP, PDIP. It is designed to be
reprogrammed and erased in system or in standard
EPROM programmers.
The standard MX29F040 offers access time as fast as
55ns, allowing operation of high-speed microprocessors
without wait states. To eliminate bus contention, the
MX29F040 has separate chip enable (CE) and output
enable (OE) controls.
MXIC's Flash memories augment EPROM functionality
with in-circuit electrical erasure and programming. The
MX29F040 uses a command register to manage this
functionality. The command register allows for 100%
TTL level control inputs and fixed power supply levels
during erase and programming, while maintaining maxi-
mum EPROM compatibility.
MXIC Flash technology reliably stores memory
contents even after 100,000 erase and program
cycles. The MXIC cell is designed to optimize the
erase and program mechanisms. In addition, the
combination of advanced tunnel oxide processing
and low internal electric fields for erase and
programming operations produces reliable cycling.
The MX29F040 uses a 5.0V±10% VCC supply to
perform the High Reliability Erase and auto
Program/Erase algorithms.
The highest degree of latch-up protection is
achieved with MXIC's proprietary non-epi process.
Latch-up protection is proved for stresses up to 100
milliamps on address and data pin from -1V to VCC
+ 1V.
P/N:PM0538
REV. 2.3, DEC. 10, 2004
1
MX29F040
PIN CONFIGURATIONS
32 PDIP
A18
A16
A15
A12
A7
A6
A5
A4
A3
A2
A1
A0
Q0
Q1
Q2
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
VCC
WE
A17
A14
A13
A8
A9
A11
OE
A10
CE
Q7
Q6
Q5
Q4
Q3
32 PLCC
VCC
A12
A15
A16
A18
A17
30
29
WE
A7
A6
A5
A4
A3
A2
A1
A0
Q0
5
4
1
32
A14
A13
A8
A9
MX29F040
9
MX29F040
25
A11
OE
A10
CE
13
14
GND
Q1
Q2
17
Q3
Q4
Q5
21
20
Q6
Q7
32 TSOP (Standard Type) (8mm x 20mm)
A11
A9
A8
A13
A14
A17
WE
VCC
A18
A16
A15
A12
A7
A6
A5
A4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OE
A10
CE
Q7
Q6
Q5
Q4
Q3
GND
Q2
Q1
Q0
A0
A1
A2
A3
MX29F040
PIN DESCRIPTION
SYMBOL
A0~A18
Q0~Q7
CE
WE
OE
GND
VCC
PIN NAME
Address Input
Data Input/Output
Chip Enable Input
Write Enable Input
Output Enable Input
Ground Pin
+5.0V single power supply
SECTOR STRUCTURE
MX29F040 SECTOR ADDRESS TABLE
Sector
SA0
SA1
SA2
SA3
SA4
SA5
SA6
SA7
A18
0
0
0
0
1
1
1
1
A17
0
0
1
1
0
0
1
1
A16
0
1
0
1
0
1
0
1
Address Range
00000h-0FFFFh
10000h-1FFFFh
20000h-2FFFFh
30000h-3FFFFh
40000h-4FFFFh
50000h-5FFFFh
60000h-6FFFFh
70000h-7FFFFh
Note: All sectors are 64 Kbytes in size.
P/N:PM0538
REV. 2.3, DEC. 10, 2004
2
MX29F040
BLOCK DIAGRAM
WRITE
CE
OE
WE
CONTROL
INPUT
LOGIC
HIGH VOLTAGE
MACHINE
(WSM)
PROGRAM/ERASE
STATE
X-DECODER
MX29F040
FLASH
ARRAY
ARRAY
STATE
REGISTER
ADDRESS
LATCH
A0-A18
AND
BUFFER
SENSE
AMPLIFIER
Y-DECODER
Y-PASS GATE
SOURCE
HV
COMMAND
DATA
DECODER
PGM
DATA
HV
COMMAND
DATA LATCH
PROGRAM
DATA LATCH
Q0-Q7
I/O BUFFER
P/N:PM0538
REV. 2.3, DEC. 10, 2004
3
MX29F040
AUTOMATIC PROGRAMMING
The MX29F040 is byte programmable using the Auto-
matic Programming algorithm. The Automatic Program-
ming algorithm makes the external system do not need
to have time out sequence nor to verify the data pro-
grammed. The typical chip programming time at room
temperature of the MX29F040 is less than 4 seconds.
AUTOMATIC ERASE ALGORITHM
MXIC's Automatic Erase algorithm requires the user to
write commands to the command register using stand-
ard microprocessor write timings. The device will auto-
matically pre-program and verify the entire array. Then
the device automatically times the erase pulse width,
provides the erase verification, and counts the number
of sequences. A status bit toggling between consecu-
tive read cycles provides feedback to the user as to the
status of the programming operation.
Register contents serve as inputs to an internal state-
machine which controls the erase and programming cir-
cuitry. During write cycles, the command register inter-
nally latches address and data needed for the program-
ming and erase operations. During a system write cycle,
addresses are latched on the falling edge of WE or CE,
whichever happens later, and data are latched on the
rising edge of WE or CE, whichever happens first.
MXIC's Flash technology combines years of EPROM
experience to produce the highest levels of quality, relia-
bility, and cost effectiveness. The MX29F040 electrically
erases all bits simultaneously using Fowler-Nordheim
tunneling. The bytes are programmed by using the
EPROM programming mechanism of hot electron injec-
tion.
During a program cycle, the state-machine will control
the program sequences and command register will not
respond to any command set. During a Sector Erase
cycle, the command register will only respond to Erase
Suspend command. After Erase Suspend is completed,
the device stays in read mode. After the state machine
has completed its task, it will allow the command regis-
ter to respond to its full command set.
AUTOMATIC CHIP ERASE
The entire chip is bulk erased using 10 ms erase pulses
according to MXIC's Automatic Chip Erase algorithm.
Typical erasure at room temperature is accomplished in
less than 4 second. The Automatic Erase algorithm au-
tomatically programs the entire array prior to electrical
erase. The timing and verification of electrical erase are
controlled internally within the device.
AUTOMATIC SECTOR ERASE
The MX29F040 is sector(s) erasable using MXIC's
Auto Sector Erase algorithm. Sector erase modes
allow sectors of the array to be erased in one erase
cycle. The Automatic Sector Erase algorithm
automatically programs the specified sector(s) prior to
electrical erase. The timing and verification of
electrical erase are controlled internally within the
device.
AUTOMATIC PROGRAMMING ALGORITHM
MXIC's Automatic Programming algorithm require the user
to only write program set-up commands (including 2 un-
lock write cycle and A0H) and a program command (pro-
gram data and address). The device automatically times
the programming pulse width, provides the program veri-
fication, and counts the number of sequences. A status
bit similar to DATA polling and a status bit toggling be-
tween consecutive read cycles, provide feedback to the
user as to the status of the programming operation.
P/N:PM0538
REV. 2.3, DEC. 10, 2004
4
MX29F040
TABLE 1. SOFTWARE COMMAND DEFINITIONS
First Bus
Command
Reset
Read
Read Silicon ID
Sector Protect Verify
Program
Chip Erase
Sector Erase
Sector Erase Suspend
Sector Erase Resume
Unlock for sector
protect/unprotect
Bus
Cycle
1
1
4
4
4
6
6
1
1
6
Cycle
Addr
XXXH
RA
555H
555H
555H
555H
555H
XXXH
XXXH
555H
Data
F0H
RD
AAH
AAH
AAH
AAH
AAH
B0H
30H
AAH
2AAH 55H
555H 80H
555H AAH
2AAH 55H
555H 20H
2AAH 55H
2AAH 55H
2AAH 55H
2AAH 55H
2AAH 55H
555H 90H
555H 90H
555H A0H
555H 80H
555H 80H
ADI
02
PA
DDI
01H
PD
2AAH 55H
2AAH 55H
555H 10H
SA
30H
(SA)X 00H
Second Bus
Cycle
Addr
Third Bus
Cycle
Data Addr
Fourth Bus
Cycle
Data Addr
Fifth Bus
Cycle
Data Addr
Data
Sixth Bus
Cycle
Addr Data
555H AAH
555H AAH
Note:
1. ADI = Address of Device identifier; A1=0, A0 = 0 for manufacture code,A1=0, A0 = 1 for device code A2-A18=Do
not care.
(Refer to table 3)
DDI = Data of Device identifier : C2H for manufacture code, A4H for device code.
X = X can be VIL or VIH
RA=Address of memory location to be read.
RD=Data to be read at location RA.
2. PA = Address of memory location to be programmed.
PD = Data to be programmed at location PA.
SA = Address to the sector to be erased.
3. The system should generate the following address patterns: 555H or 2AAH to Address A10~A0 .
Address bit A11~A18=X=Don't care for all address commands except for Program Address (PA) and Sector
Address (SA). Write Sequence may be initiated with A11~A18 in either state.
4. For Sector Protect Verify Operation : If read out data is 01H, it means the sector has been protected. If read out
data is 00H, it means the sector is still not being protected.
COMMAND DEFINITIONS
Device operations are selected by writing specific ad-
dress and data sequences into the command register.
Writing incorrect address and data values or writing them
in the improper sequence will reset the device to the
read mode. Table 1 defines the valid register command
sequences. Note that the Erase Suspend (B0H) and
Erase Resume (30H) commands are valid only while the
Sector Erase operation is in progress. Either of the two
reset command sequences will reset the device (when
applicable).
P/N:PM0538
REV. 2.3, DEC. 10, 2004
5
查看更多>
热门器件
热门资源推荐
器件捷径:
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT BU BV BW BX BY BZ C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CO CP CQ CR CS CT CU CV CW CX CY CZ D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DO DP DQ DR DS DT DU DV DW DX DZ
需要登录后才可以下载。
登录取消