NCP585
Tri-Mode 300 mA CMOS
LDO Regulator with Enable
The NCP585 series of low dropout regulators are designed for
portable battery powered applications which require precise output
voltage accuracy, low quiescent current, and high ripple rejection.
These devices feature an enable function which lowers current
consumption significantly and are offered in the SOT23−5 and the
HSON−6 packages, in fixed output voltages between 0.8 V and 3.3 V.
This series of devices have three modes. Chip Enable (CE mode),
Fast Transient Mode (FT mode), and Low Power Mode (LP mode).
Both the FT and LP mode are utilized via the ECO pin.
Features
http://onsemi.com
MARKING
DIAGRAMS
•
Tri−mode Operation
•
Low Dropout Voltage:
5
1
SOT23−5
SN SUFFIX
CASE 1212
5
XXXTT
1
•
•
•
•
•
•
•
•
•
•
Typ 550 mV at 300 mA, Output Voltage = 0.9 V
Typ 480 mV at 300 mA, Output Voltage = 1.0 V
Typ 310 mV at 300 mA, Output Voltage = 1.5 V
Excellent Line Regulation of 0.01%/V (0.05%/V LP Mode)
Excellent Load Regulation of 15 mV (40 mV FT Mode)
High Output Voltage Accuracy of
"2%
("3% LP mode)
Ultra−Low Iq Current of:
3.5
mA
(LP mode, Output Voltage < 1.6 V)
80
mA
(FT mode, Output Voltage < 1.8 V)
60
mA
(FT mode, Output Voltage = 1.8 V)
Very Low Shutdown Current of 0.1
mA
Excellent Power Supply Rejection Ratio of 70 dB at f = 1.0 kHz
Low Temperature Drift Coefficient on the Output Voltage of
"100
ppm/°C
Fold Back Protection Circuit
Input Voltage up to 6.5 V
These are Pb−Free Devices
6
6
1
HSON−6
SAN SUFFIX
CASE 506AE
1
XXX = Specific Device Code
TT = Traceability Information
XXX
XTT
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
*Additional voltage options may be available between
0.8 V and 3.3 V in 100 mV steps.
Typical Applications
•
Portable Equipment
•
Hand−Held Instrumentation
•
Camcorders and Cameras
©
Semiconductor Components Industries, LLC, 2009
July, 2009
−
Rev. 14
1
Publication Order Number:
NCP585/D
NCP585
ECO
V
in
V
out
V
in
ECO
V
out
-
+
V
ref
Current Limit
CE
GND
CE
V
ref
-
+
Current Limit
GND
Figure 1. Simplified Block Diagram for Active Low
Figure 2. Simplified Block Diagram for Active High
ECO
V
in
V
out
-
+
V
ref
Current Limit
CE
GND
Figure 3. Simplified Block Diagram for Active High
with Auto Discharge
PIN FUNCTION DESCRIPTION
HSON−6
1
2
3
4
5
6
SOT23−5
1
−
5
4
2
3
Pin Name
V
in
NC
Vout
ECO
GND
CE or CE
Power supply input voltage.
No Connect.
Regulated output voltage.
Mode alternative pin. (V
ECO
= V
in
for FT mode; V
ECO
= GND for LP mode)
Power supply ground.
Chip enable pin.
Description
http://onsemi.com
2
NCP585
MAXIMUM RATINGS
Rating
Input Voltage
Input Voltage (CE or CE Pin)
Input Voltage (ECO Pin)
Output Voltage
Output Current
Power Dissipation
SOT23−5
HSON−6
Symbol
V
in
V
CE
V
ECO
V
out
I
out
P
D
ESD
HBM
ESD
MM
T
A
T
J(max)
T
stg
Value
6.5
−0.3
to 6.5
−0.3
to 6.5
−0.3
to V
in
+0.3
350
250
400
2000
150
−40
to +85
125
−55
to +150
Unit
V
V
V
V
mA
mW
V
V
°C
°C
°C
ESD Capability, Human Body Model, C = 100 pF, R = 1.5 kW
ESD Capability, Machine Model, C = 200 pF, R = 0
W
Operating Ambient Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
ELECTRICAL CHARACTERISTICS
(V
in
= V
out
+ 1.0 V, T
A
= 25°C, unless otherwise noted.)
Characteristic
Input Voltage
Output Voltage (1.0
mA
≤
I
out
≤
30 mA)
V
ECO
= V
in
V
ECO
= GND
Line Regulation (I
out
= 30 mA, V
out
+ 0.5 V
≤
V
in
≤
6.0 V)
FT Mode V
ECO
= V
in
LP Mode V
ECO
= GND
Load Regulation
FT Mode (1.0 mA
≤
I
out
≤
300 mA), V
ECO
= V
in
LP Mode (1.0 mA
≤
I
out
≤
100 mA), V
ECO
= GND
Dropout Voltage (I
out
= 300 mA)
V
out
= 0.9 V
1.0 V
v
V
out
v
1.25 V
1.5 V
v
V
out
v
2.5 V
2.8 V
v
V
out
v
3.3 V
Quiescent Current (I
out
= 0 mA)
FT Mode, V
ECO
= V
in
V
out
< 1.8 V
V
out
≥
1.8 V
LP Mode, V
ECO
= GND
V
out
< 1.6 V
V
out
≥
1.8 V
Output Current (V
in
−
V
out
= 1.0 V)
Shutdown Current (V
CE
= V
in
)
Output Short Circuit Current (V
out
= 0 V)
Enable Input Threshold Voltage
−
High
Enable Input Threshold Voltage
−
Low
Output Noise Voltage (10 Hz
−
100 kHz)
N−Channel On Resistance for Auto Discharge
Ripple Rejection
(I
out
= 50 mA, V
out
= 0.9 V, V
in
−
V
out
= 1.0 V)
f = 120 Hz
f = 1.0 kHz
f = 10 kHz
Output Voltage Temperature Coefficient
(I
out
= 30 mA,
−40°C
≤
T
A
≤
85°C)
Symbol
V
in
V
out
Min
1.4
V
out
x 0.980
V
out
x 0.970
−
−
−
−
−
−
−
−
Typ
−
−
−
0.01
0.05
40
15
ECO = H
0.55
0.48
0.31
0.23
ECO = L
0.59
0.51
0.32
0.24
Max
6.0
V
out
x 1.020
V
out
x 1.030
0.15
0.20
70
30
ECO = H
0.78
0.70
0.45
0.35
ECO = L
0.80
0.75
0.48
0.375
Unit
V
V
Reg
line
%/V
Reg
load
mV
V
DO
V
Iq
−
−
−
−
I
out
I
SD
I
lim
Vth
enh
Vth
enl
V
n
R
Low
RR
−
−
−
DV
out
/
DT
−
75
70
65
"100
−
−
−
−
ppm/
°C
300
−
−
1.0
0.0
−
−
80
60
3.5
4.5
−
0.1
50
−
−
30
60
111
90
8.0
9.0
−
1.0
−
V
in
0.3
−
−
mA
mA
mA
V
mVrm
s
W
dB
mA
http://onsemi.com
3
NCP585
TYPICAL CHARACTERISTICS
1.6
OUTPUT VOLTAGE, V
out
(V)
OUTPUT VOLTAGE, V
out
(V)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
200
V
in
= V
out
nominal +0.3 V
V
out
= V
out
nominal
ECO = H
400
600
V
in
= V
out
nominal +2.0 V
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
200
V
in
= V
out
nominal +0.3 V
V
out
= V
out
nominal
ECO = L
400
600
V
in
= V
out
nominal +2.0 V
OUTPUT CURRENT, I
out
(mA)
OUTPUT CURRENT, I
out
(mA)
Figure 4. Output Voltage vs. Output Current
1.1
1.0
OUTPUT VOLTAGE, V
out
(V)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.1
1.1
2.1
3.1
4.1
I
out
= 1.0 mA
I
out
= 30 mA
I
out
= 50 mA
V
out
= 0.9 V
ECO = H
5.1
6.1
OUTPUT VOLTAGE, V
out
(V)
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.1
Figure 5. Output Voltage vs. Output Current
I
out
= 1.0 mA
I
out
= 30 mA
I
out
= 50 mA
V
out
= 0.9 V
ECO = L
1.1
2.1
3.1
4.1
5.1
6.1
INPUT VOLTAGE, V
in
(V)
INPUT VOLTAGE, V
in
(V)
Figure 6. Output Voltage vs. Input Voltage
1.9
OUTPUT VOLTAGE, V
out
(V)
OUTPUT VOLTAGE, V
out
(V)
1.7
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.3
1.3
I
out
= 1.0 mA
I
out
= 30 mA
I
out
= 50 mA
2.3
3.3
4.3
V
out
= 1.8 V
ECO = H
5.3
6.3
1.9
1.7
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.3
Figure 7. Output Voltage vs. Input Voltage
I
out
= 1.0 mA
I
out
= 30 mA
I
out
= 50 mA
1.3
2.3
3.3
4.3
V
out
= 1.8 V
ECO = L
5.3
6.3
INPUT VOLTAGE, V
in
(V)
INPUT VOLTAGE, V
in
(V)
Figure 8. Output Voltage vs. Input Voltage
Figure 9. Output Voltage vs. Input Voltage
http://onsemi.com
4
NCP585
TYPICAL CHARACTERISTICS
100
QUIESCENT CURRENT, Iq (mA)
80
70
60
50
40
30
20
10
0
0.1
1.1
2.1
3.1
4.1
V
out
= 0.9 V
ECO = H
5.1
6.1
QUIESCENT CURRENT, Iq (mA)
90
8
7
6
5
4
3
2
1
0
0.1
1.1
2.1
3.1
4.1
V
out
= 0.9 V
ECO = L
5.1
6.1
INPUT VOLTAGE, V
in
(V)
INPUT VOLTAGE, V
in
(V)
Figure 10. Quiescent Current vs. Input Voltage
80
QUIESCENT CURRENT, Iq (mA)
QUIESCENT CURRENT, Iq (mA)
70
60
50
40
30
20
10
0
0.3
1.3
2.3
3.3
4.3
V
out
= 1.8 V
ECO = H
5.3
6.3
8
7
6
5
4
3
2
1
Figure 11. Quiescent Current vs. Input Voltage
V
out
= 1.8 V
ECO = L
1.3
2.3
3.3
4.3
5.3
6.3
0
0.3
INPUT VOLTAGE, V
in
(V)
INPUT VOLTAGE, V
in
(V)
Figure 12. Quiescent Current vs. Input Voltage
0.93
OUTPUT VOLTAGE, V
out
(V)
OUTPUT VOLTAGE, V
out
(V)
0.92
0.91
0.90
0.89
0.88
0.87
−50
V
out
= 0.9 V
ECO = H
−25
0
25
50
75
100
0.93
0.92
0.91
0.90
0.89
0.88
Figure 13. Quiescent Current vs. Input Voltage
V
out
= 0.9 V
ECO = L
−25
0
25
50
75
100
0.87
−50
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 14. Output Voltage vs. Temperature
Figure 15. Output Voltage vs. Temperature
http://onsemi.com
5