D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NCV4276, NCV4276A
400 mA Low-Drop Voltage
Regulator
The NCV4276 is a 400 mA output current integrated low dropout
regulator family designed for use in harsh automotive environments.
It includes wide operating temperature and input voltage ranges. The
device is offered with fixed output voltage options of 1.8 V and 2.5 V
with 4% output voltage accuracy while the 3.3 V, 5.0 V, and
adjustable voltage versions are available either in 2% or 4% output
voltage accuracy. It has a high peak input voltage tolerance and
reverse input voltage protection. It also provides overcurrent
protection, overtemperature protection and inhibit for control of the
state of the output voltage. The NCV4276 family is available in
DPAK and D
2
PAK surface mount packages. The output is stable over
a wide output capacitance and ESR range.
Features
http://onsemi.com
1
5
•
2.5 V and 1.8 V
±4%
Output Voltage
•
3.3 V, 5.0 V, and Adjustable Voltage Version (from 2.5 V to 20 V)
•
•
•
•
•
DPAK
5−PIN
DT SUFFIX
CASE 175AA
•
•
±4%
or
±2%
Output Voltage
400 mA Output Current
500 mV (max) Dropout Voltage (5.0 V Output)
Inhibit Input
Very Low Current Consumption
Fault Protection
♦
+45 V Peak Transient Voltage
♦
−42
V Reverse Voltage
♦
Short Circuit
♦
Thermal Overload
NCV Prefix for Automotive and Other Applications Requiring Site
and Control Changes
Pb−Free Packages are Available
1
5
D
2
PAK
5−PIN
DS SUFFIX
CASE 936A
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 20 of this data sheet.
ORDERING INFORMATION
See detailed ordering and shipping information in the ordering
information section on page 21 of this data sheet.
©
Semiconductor Components Industries, LLC, 2008
June, 2008
−
Rev. 21
1
Publication Order Number:
NCV4276/D
NCV4276, NCV4276A
I
Error
Amplifier
−
+
Current Limit and
Saturation Sense
Q
Bandgap
Reference
Thermal
Shutdown
INH
GND
NC
Figure 1. 4276 Block Diagram
I
Error
Amplifier
−
+
Current Limit and
Saturation Sense
Q
Bandgap
Reference
Thermal
Shutdown
INH
GND
VA
Figure 2. 4276 Adjustable Block Diagram
http://onsemi.com
2
NCV4276, NCV4276A
PIN FUNCTION DESCRIPTION
Pin No.
1
2
3
4
5
Symbol
I
INH
GND
NC / VA
Q
Input; Battery Supply Input Voltage.
Inhibit; Set low−to inhibit.
Ground; Pin 3 internally connected to heatsink.
Not connected for fixed voltage version / Voltage Adjust Input for adjustable voltage version; use an external
voltage divider to set the output voltage
Use 22
mF,
ESR < 2.5
W
at 10 kHz to ground with the 5.0 V and adjustable regulators. See Figures 3, 4, and 5.
Use 10
mF,
ESR < 1.8
W
at 10 kHz to ground with the 3.3 V, 2.5 V, and 1.8 V regulators. See Figures 3 and 6.
Description
MAXIMUM RATINGS*
Rating
Input Voltage
Input Peak Transient Voltage
Inhibit INH Voltage
Output Voltage
Ground Current
Input Voltage Operating Range
ESD Susceptibility
(Human Body Model)
(Machine Model)
(Charged Device Model)
Symbol
V
I
V
I
V
INH
V
Q
I
q
V
I
−
−
−
T
J
T
stg
Min
−42
−
−42
−1.0
−
V
Q
+ 0.5 V or 4.5 V
(Note 1)
4.5
250
1.25
−40
−50
Max
45
45
45
40
100
40
−
−
−
150
150
Unit
V
V
V
V
mA
V
kV
V
kV
°C
°C
Junction Temperature
Storage Temperature
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
*During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal
dissipation must be observed closely.
LEAD TEMPERATURE SOLDERING REFLOW
(Note 2)
Lead Temperature Soldering
Reflow (SMD styles only), Leaded, 60−150 s above 183, 30 s max at peak
Reflow (SMD styles only), Lead Free, 60−150 s above 217, 40 s max at peak
Wave Solder (through hole styles only), 12 sec max
T
SLD
−
−
−
240
265
310
°C
THERMAL CHARACTERISTICS
Characteristic
DPAK 5−PIN PACKAGE
Min Pad Board
(Note 3)
Junction−to−Tab (psi−JLx,
y
JLx
)
Junction−to−Ambient (R
qJA
,
q
JA
)
D
2
PAK 5−PIN PACKAGE
0.4 sq. in. Spreader Board
(Note 5)
Junction−to−Tab (psi−JLx,
y
JLx
)
Junction−to−Ambient (R
qJA
,
q
JA
)
1.
2.
3.
4.
5.
6.
3.8
74.8
1.2 sq. in. Spreader Board
(Note 6)
4.0
41.6
C/W
C/W
4.2
100.9
1, Pad Board
(Note 4)
4.7
46.8
C/W
C/W
Test Conditions (Typical Value)
Unit
Minimum V
I
= 4.5 V or (V
Q
+ 0.5 V), whichever is higher.
Per IPC / JEDEC J−STD−020C.
1 oz. copper, 0.26 inch
2
(168 mm
2
) copper area, 0.062″ thick FR4.
1 oz. copper, 1.14 inch
2
(736 mm
2
) copper area, 0.062″ thick FR4.
1 oz. copper, 0.373 inch
2
(241 mm
2
) copper area, 0.062″ thick FR4.
1 oz. copper, 1.222 inch
2
(788 mm
2
) copper area, 0.062″ thick FR4.
http://onsemi.com
3
NCV4276, NCV4276A
ELECTRICAL CHARACTERISTICS
(V
I
= 13.5 V;
−40°C
< T
J
< 150°C; unless otherwise noted.)
NCV4276
Characteristic
OUTPUT
Output Voltage, 5.0 V Version
Output Voltage, 5.0 V Version
Output Voltage, 3.3 V Version
Output Voltage, 3.3 V Version
Output Voltage, 2.5 V Version
Output Voltage, 2.5 V Version
Output Voltage, 1.8 V Version
Output Voltage, 1.8 V Version
Output Voltage, Adjustable
Version
Output Current Limitation
Quiescent Current (Sleep Mode)
I
q
= I
I
−
I
Q
Quiescent Current, I
q
= I
I
−
I
Q
Quiescent Current, I
q
= I
I
−
I
Q
Quiescent Current, I
q
= I
I
−
I
Q
Dropout Voltage,
5.0 V Version
3.3 V Version
2.5 V Version
1.8 V Version
Adjustable Version
Dropout Voltage (5.0 V Version)
Load Regulation
Line Regulation
Power Supply Ripple Rejection
Temperature Output Voltage Drift
INHIBIT
Inhibit Voltage, Output High
Inhibit Voltage, Output Low (Off)
Input Current
THERMAL SHUTDOWN
Thermal Shutdown Temperature*
T
SD
I
Q
= 5.0 mA
150
−
210
150
−
210
°C
*Guaranteed by design, not tested in production.
7. Measured when the output voltage V
Q
has dropped 100 mV from the nominal valued obtained at V = 13.5 V.
V
INH
V
INH
I
INH
V
Q
w
V
QMIN
V
Q
v
0.1 V
V
INH
= 5.0 V
−
0.5
5.0
2.8
1.7
10
3.5
−
20
−
1.8
5.0
2.3
2.2
10
2.8
−
20
V
V
mA
V
DR
DV
Q,LO
DV
Q
PSRR
d
VQ/dT
V
Q
V
Q
V
Q
V
Q
V
Q
V
Q
V
Q
V
Q
AV
Q
5.0 mA < I
Q
< 400 mA,
6.0 V < V
I
< 28 V
5.0 mA < I
Q
< 200 mA,
6.0 V < V
I
< 40 V
5.0 mA < I
Q
< 400 mA,
4.5 V < V
I
< 28 V
5.0 mA < I
Q
< 200 mA,
4.5 V < V
I
< 40 V
5.0 mA < I
Q
< 400 mA,
4.5 V < V
I
< 28 V
5.0 mA < I
Q
< 200 mA,
4.5 V < V
I
< 40 V
5.0 mA < I
Q
< 400 mA,
4.5 V < V
I
< 28 V
5.0 mA < I
Q
< 200 mA,
4.5 V < V
I
< 40 V
5.0 mA < I
Q
< 400 mA
V
Q
+1 < V
I
< 40 V
V
I
> 4.5 V
V
Q
= 90% V
QTYP
(V
QTYP
= 2.5 V for ADJ version)
V
INH
= 0 V
I
Q
= 1.0 mA
I
Q
= 250 mA
I
Q
= 400 mA
I
Q
= 250 mA,
V
DR
= V
I
−
V
Q
V
I
= 5.0 V
V
I
= 4.5 V
V
I
= 4.5 V
V
I
= 4.5 V
V
I
> 4.5 V
I
Q
= 250 mA (Note 7)
I
Q
= 5.0 mA to 400 mA
DV
I
= 12 V to 32 V,
I
Q
= 5.0 mA
f
r
= 100 Hz, V
r
= 0.5 V
PP
−
4.8
4.8
3.168
3.168
2.4
2.4
1.728
1.728
−4%
5.0
5.0
3.3
3.3
2.5
2.5
1.8
1.8
−
5.2
5.2
3.432
3.432
2.6
2.6
1.872
1.872
+4%
4.9
4.9
3.234
3.234
−
−
−
−
−2%
5.0
5.0
3.3
3.3
−
−
−
−
−
5.1
5.1
3.366
3.366
−
−
−
−
+2%
V
V
V
V
V
V
V
V
V
Symbol
Test Conditions
Min
Typ
Max
Min
NCV4276A
Typ
Max
Unit
I
Q
I
q
I
q
I
q
I
q
V
DR
400
−
−
−
−
700
−
130
10
25
1100
10
220
15
35
400
−
−
−
−
700
−
130
10
25
1100
10
200
15
35
mA
mA
mA
mA
mA
−
−
−
−
−
−
−
−
−
−
250
−
−
−
250
−
10
2.5
60
0.5
500
1.332
2.1
2.772
500
−
35
25
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
250
250
3.0
4.0
70
0.5
−
−
−
−
500
500
20
15
−
−
mV
V
V
V
mV
mV
mV
mV
dB
mV/K
http://onsemi.com
4