LM833, NCV833
Low Noise, Audio Dual
Operational Amplifier
The LM833 is a standard low−cost monolithic dual general−purpose
operational amplifier employing Bipolar technology with innovative
high−performance concepts for audio systems applications. With high
frequency PNP transistors, the LM833 offers low voltage noise
(4.5 nV/
Hz
), 15 MHz gain bandwidth product, 7.0 V/ms slew rate,
0.3 mV input offset voltage with 2.0
mV/°C
temperature coefficient of
input offset voltage. The LM833 output stage exhibits no dead−band
crossover distortion, large output voltage swing, excellent phase and
gain margins, low open loop high frequency output impedance and
symmetrical source/sink AC frequency response.
For an improved performance dual/quad version, see the MC33079
family.
Features
1
LM833N
A
WL
YY
WW
G
http://onsemi.com
MARKING
DIAGRAMS
8
PDIP−8
N SUFFIX
CASE 626
1
= Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
LM833N
AWL
YYWWG
•
•
•
•
•
•
•
•
•
Low Voltage Noise: 4.5 nV/
Hz
High Gain Bandwidth Product: 15 MHz
High Slew Rate: 7.0 V/ms
Low Input Offset Voltage: 0.3 mV
Low T.C. of Input Offset Voltage: 2.0
mV/°C
Low Distortion: 0.002%
Excellent Frequency Stability
Dual Supply Operation
NCV Prefix for Automotive and Other Applications Requiring Site
and Change Controls
•
These Devices are Pb−Free and are RoHS Compliant
MAXIMUM RATINGS
Rating
Supply Voltage (V
CC
to V
EE
)
Input Differential Voltage Range (Note 1)
Input Voltage Range (Note 1)
Output Short Circuit Duration (Note 2)
Operating Ambient Temperature Range
Operating Junction Temperature
Storage Temperature
ESD Protection at any Pin
−
Human Body Model
−
Machine Model
Maximum Power Dissipation (Notes 2 and 3)
Symbol
V
S
V
IDR
V
IR
t
SC
T
A
T
J
T
stg
V
esd
Value
+36
30
±15
Indefinite
−40
to +85
+150
−60
to +150
600
200
500
°C
°C
°C
V
Unit
V
V
V
1
LM833
A
L
Y
W
G
SOIC−8
D SUFFIX
CASE 751
1
LM833
ALYW
G
= Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
PIN CONNECTIONS
Output 1
1
8
V
CC
Output 2
2
1
7
Inputs 1
3
2
6
Inputs 2
5
P
D
mW
V
EE
4
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Either or both input voltages must not exceed the magnitude of V
CC
or V
EE
.
2. Power dissipation must be considered to ensure maximum junction
temperature (T
J
) is not exceeded (see power dissipation performance
characteristic).
3. Maximum value at T
A
≤
85°C.
1
(Top View)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
©
Semiconductor Components Industries, LLC, 2011
September, 2011
−
Rev. 6
Publication Order Number:
LM833/D
LM833, NCV833
ELECTRICAL CHARACTERISTICS
(V
CC
= +15 V, V
EE
=
−15
V, T
A
= 25°C, unless otherwise noted.)
Characteristic
Input Offset Voltage (R
S
= 10
W,
V
O
= 0 V)
Average Temperature Coefficient of Input Offset Voltage
R
S
= 10
W,
V
O
= 0 V, T
A
= T
low
to T
high
Input Offset Current (V
CM
= 0 V, V
O
= 0 V)
Input Bias Current (V
CM
= 0 V, V
O
= 0 V)
Common Mode Input Voltage Range
Large Signal Voltage Gain (R
L
= 2.0 kW, V
O
=
±10
V)
Output Voltage Swing:
R
L
= 2.0 kW
,
V
ID
= 1.0 V
R
L
= 2.0 kW
,
V
ID
= 1.0 V
R
L
= 10 kW
,
V
ID
= 1.0 V
R
L
= 10 kW, V
ID
= 1.0 V
Common Mode Rejection (V
in
=
±12
V)
Power Supply Rejection (V
S
= 15 V to 5.0 V,
−15
V to
−5.0
V)
Power Supply Current (V
O
= 0 V, Both Amplifiers)
Symbol
V
IO
DV
IO
/DT
I
IO
I
IB
V
ICR
A
VOL
V
O+
V
O−
V
O+
V
O−
CMR
PSR
I
D
Min
−
−
−
−
−
−12
90
10
−
12
−
80
80
−
Typ
0.3
2.0
10
300
+14
−14
110
13.7
−14.1
13.9
−14.7
100
115
4.0
Max
5.0
−
200
1000
+12
−
−
−
−10
−
−12
−
−
8.0
Unit
mV
mV/°C
nA
nA
V
dB
V
dB
dB
mA
AC ELECTRICAL CHARACTERISTICS
(V
CC
= +15 V, V
EE
=
−15
V, T
A
= 25°C, unless otherwise noted.)
Characteristic
Slew Rate (V
in
=
−10
V to +10 V, R
L
= 2.0 kW, A
V
= +1.0)
Gain Bandwidth Product (f = 100 kHz)
Unity Gain Frequency (Open Loop)
Unity Gain Phase Margin (Open Loop)
Equivalent Input Noise Voltage (R
S
= 100
W,
f = 1.0 kHz)
Equivalent Input Noise Current (f = 1.0 kHz)
Power Bandwidth (V
O
= 27 V
pp
, R
L
= 2.0 kW, THD
≤
1.0%)
Distortion (R
L
= 2.0 kW, f = 20 Hz to 20 kHz, V
O
= 3.0 V
rms,
A
V
= +1.0)
Channel Separation (f = 20 Hz to 20 kHz)
Symbol
S
R
GBW
f
U
q
m
e
n
i
n
BWP
THD
C
S
Min
5.0
10
−
−
−
−
−
−
−
Typ
7.0
15
9.0
60
4.5
0.5
120
0.002
−120
Max
−
−
−
−
−
−
−
−
−
nV
pA
Unit
V/ms
MHz
MHz
°
Hz
Hz
kHz
%
dB
PD , MAXIMUM POWER DISSIPATION (mW)
800
IIB , INPUT BIAS CURRENT (nA)
1000
800
600
400
200
0
-55
V
CC
= +15 V
V
EE
= -15 V
V
CM
= 0 V
600
400
200
0
-50
0
50
100
150
-25
0
25
50
75
100
125
T
A
, AMBIENT TEMPERATURE (°C)
T
A
, AMBIENT TEMPERATURE (°C)
Figure 1. Maximum Power Dissipation
versus Temperature
Figure 2. Input Bias Current versus Temperature
http://onsemi.com
2
LM833, NCV833
800
I IB , INPUT BIAS CURRENT (nA)
I S , SUPPLY CURRENT (mA)
T
A
= 25°C
600
10
8.0
6.0
I
S
V
CC
R
L
=
∞
T
A
= 25°C
V
O
V
EE
+
400
4.0
2.0
0
200
0
5.0
10
15
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
20
0
5.0
10
15
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
20
Figure 3. Input Bias Current versus
Supply Voltage
Figure 4. Supply Current versus
Supply Voltage
110
AVOL, DC VOLTAGE GAIN (dB)
105
AVOL, DC VOLTAGE GAIN (dB)
V
CC
= +15 V
V
EE
= -15 V
R
L
= 2.0 kW
110
R
L
= 2.0 kW
T
A
= 25°C
100
100
90
95
90
-55
-25
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
80
5.0
10
15
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
20
Figure 5. DC Voltage Gain
versus Temperature
Figure 6. DC Voltage Gain versus
Supply Voltage
AVOL, OPEN LOOP VOLTAGE GAIN (dB)
100
45
80
60
40
20
0
1.0
10
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
V
CC
= +15 V
V
EE
= -15 V
R
L
= 2.0 kW
T
A
= 25°C
Phase
90
GBW, GAIN BANDWIDTH PRODUCT (MHz)
120
0
∅
, EXCESS PHASE (DEGREES)
20
15
10
V
CC
= +15 V
V
EE
= -15 V
f = 100 kHz
Gain
135
5.0
180
10 M
0
-55
-25
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
Figure 7. Open Loop Voltage Gain and
Phase versus Frequency
Figure 8. Gain Bandwidth Product
versus Temperature
http://onsemi.com
3
LM833, NCV833
GBW, GAIN BANDWIDTH PRODUCT (MHz)
30
f = 100 kHz
T
A
= 25°C
20
10
SR, SLEW RATE (V/
μ
s)
8.0
Falling
Rising
6.0
V
CC
= +15 V
V
EE
= -15 V
R
L
= 2.0 kW
A
V
= +1.0
-25
-
+
10
4.0
V
in
V
O
R
L
0
5.0
10
15
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
20
2.0
-55
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
Figure 9. Gain Bandwidth Product versus
Supply Voltage
Figure 10. Slew Rate versus Temperature
10
8.0
SR, SLEW RATE (V/
μ
s)
6.0
4.0
2.0
0
5.0
Falling
Rising
VO , OUTPUT VOLTAGE (V pp )
R
L
= 2.0k
W
A
V
= +1.0
T
A
= 25°C
35
30
25
20
15
10
5.0
10
15
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
20
0
10
100
1.0 k
10 k
1.0 M
f, FREQUENCY (Hz)
10 M
100 k
V
CC
= +15 V
V
EE
= -15 V
R
L
= 2.0 kW
THD
v
1.0%
T
A
= 25°C
+
-
V
in
V
O
R
L
Figure 11. Slew Rate versus Supply Voltage
Figure 12. Output Voltage versus Frequency
VO, OUTPUT VOLTAGE (V pp )
15
10
5.0
0
R
L
= 10 kW
T
A
= 25°C
V
O
+
V sat , OUTPUT SATURATION VOLTAGE |V|
20
15
+V
sat
14
-V
sat
-5.0
-10
-15
-20
5.0
10
15
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
20
V
O
-
V
CC
= +15 V
V
EE
= -15 V
R
L
= 10 kW
13
-55
-25
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
Figure 13. Maximum Output Voltage
versus Supply Voltage
Figure 14. Output Saturation Voltage
versus Temperature
http://onsemi.com
4
LM833, NCV833
PSR, POWER SUPPLY REJECTION (dB)
CMR, COMMON MODE REJECTION (dB)
140
120
100
80
60
40
20
0
100
+PSR = 20 Log
-PSR = 20 Log
1.0 k
-PSR
V
CC
= +15 V
V
EE
= -15 V
T
A
= 25°C
DV
CC
A
DM
-
160
140
120
DV
CM
-
+
A
DM
+
DV
O
DV
EE
DV
O
DV
CM
×
A
DM
DV
0
CMR = 20 Log
100
80
60
40
20
100
V
CC
= +15 V
V
EE
= -15 V
V
CM
= 0 V
DV
CM
=
±1.5
V
T
A
= 25°C
1.0 k
+PSR
(
DV
CC
)
(
DV
O
/A
DM
)
DV
EE
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
10 M
DV
O
/A
DM
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
10 M
Figure 15. Power Supply Rejection
versus Frequency
Figure 16. Common Mode Rejection
versus Frequency
THD, TOTAL HARMONIC DISTORTION (%)
1.0
-
10
V
O
R
L
+
0.1
V
CC
= +15 V
V
EE
= -15 V
R
L
= 2.0 kW
T
A
= 25°C
e n, INPUT NOISE VOLTAGE (nV/
√
Hz )
5.0
0.01
V
O
= 1.0 V
rms
2.0
V
CC
= +15 V
V
EE
= -15 V
R
S
= 100
W
T
A
= 25°C
0.001
10
V
O
= 3.0 V
rms
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
1.0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 17. Total Harmonic Distortion
versus Frequency
Figure 18. Input Referred Noise Voltage
versus Frequency
i n , INPUT NOISE CURRENT (pA/
√
Hz )
2.0
e n, INPUT NOISE VOLTAGE (nV/
√
Hz )
V
CC
= +15 V
V
EE
= -15 V
T
A
= 25°C
100
1.0
0.7
0.5
0.4
0.3
0.2
10
V
CC
= +15 V
V
EE
= -15 V
V
n
(total) = (i
n
R
S
)
2
+e
n2
+
T
A
= 25°C
4KTRS
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
1.0
1.0
10
100
1.0 k
10 k
100 k
1.0 M
R
S
, SOURCE RESISTANCE (W)
Figure 19. Input Referred Noise Current
versus Frequency
Figure 20. Input Referred Noise Voltage
versus Source Resistance
http://onsemi.com
5