P4KE SERIES
400 Watts Transient Voltage Suppressor Diodes
DO-41
Features
400W surge capability at 10 x 100us
waveform, duty cycle: 0.01%
Excellent clamping capability
Low zener impedance
Fast response time: Typically less than 1.0ps
from 0 volts to VBR for unidirectional and 5.0
ns for bidirectional
Typical I
R
less than 1 uA above 10V
High temperature soldering guaranteed: 260
o
C
/ 10 seconds / .375”,(9.5mm) lead length /
5lbs.,(2.3kg) tension
Dimensions in inches and (millimeters)
Mechanical Data
Case: Molded plastic
Polarity: Color band denotes cathode except bipolar
Weight: 0.35 gram
Rating at 25
o
C ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%
Maximum Ratings and Electrical Characteristics
Type Number
P
eak
P
ower
D
issipation at
T
A
=25 C, Tp=1ms (
N
ote 1)
o
Steady State Power Dissipation at T
L
=75
o
C
Lead Lengths .375”, 9.5mm (Note 2)
Peak Forward Surge Current, 8.3 ms Single Half
Sine-wave Superimposed on Rated Load
(JEDEC method) (Note 3)
Maximum Instantaneous Forward Voltage at 25.0A for
Unidirectional Only (Note 4)
Symbol
P
PK
P
D
I
FSM
V
F
Value
Minimum 400
1.0
40
3.5 / 6.5
Units
Watts
Watts
Amps
Volts
o
Operating and Storage Temperature Range
T
J
, T
STG
-55 to + 175
C
o
1. Non-repetitive Current Pulse Per Fig. 3 and Derated above T
A
=25 C Per Fig. 2.
Notes:
2. Mounted on Copper Pad Area of 1.6 x 1.6” (40 x 40 mm) Per Fig. 4.
3. 8.3ms Single Half Sine-wave or Equivalent Square Wave, Duty Cycle=4 Pulses Per Minutes
Maximum.
4. V
F
=3.5V for Devices of V
BR
≤
200V and V
F
=6.5V Max. for Devices V
BR
>200V
Devices for Bipolar Applications
1. For Bidirectional Use C or CA Suffix for Types P4KE6.8 thru Types P4KE440.
2. Electrical Characteristics Apply in Both Directions.
http://www.luguang.cn
mail:lge@luguang.cn
P4KE SERIES
400 Watts Transient Voltage Suppressor Diodes
RATINGS AND CHARACTERISTIC CURVES (P4KE SERIES)
FIG.1- PEAK PULSE POWER RATING CURVE
NON-REPETITIVE
PULSE WAVEFORM
SHOWN in FIG. 3
T
A
=25
0
C
FIG.2- DERATING CURVE
PM
(AV)
, STEADY STATE POWER DISSIPATION,
WATTS
5.0
100
Pppm, PEAK PULSE POWER, KW
10
L=0.375"(9.5mm)
LEAD LENGTHS
2.5
With heat sink
1
PULSE
Without heat sink
1.6 X 1.6 X .040"
(40 X 40 X 1mm.)
COPPER HEAT SINKS
0
0
25
50
75
100
125
o
0.1
0.1 s
1.0 s
10 s
100 s
1.0ms
10ms
150
175
200
td. PULSE WIDTH, sec.
TL, LEAD TEMPERATURE, C
FIG.3- CLAMPING POWER PULSE WAVEFORM
150
50
PULSE WIDTH (td) is DEFINED
as the POINT WHERE the PEAK
CURRENT DECAYS
to 50% of l
PPM
FIG.4- MAXIMUM NON-REPETITIVE FORWARD
SURGE CURRENT
PEAK FORWARD SURGE CURRENT. (A)
8.3ms Single Half Sine Wave
JEDEC Method
UNIDIRECTIONAL ONLY
tr=10
m
sec.
PEAK PULSE CURRENT - %
100
PEAK VALUE
l
PPM
40
30
HALF VALUE- l
PPM
2
10/1000
m
sec. WAVEFORM
as DEFINED by R.E.A.
50
20
10
0
td
0
1.0
2.0
t, TIME, ms
3.0
4.0
0
1
10
NUMBER OF CYCLES AT 60Hz
100
100,000
FIG.5- TYPICAL JUNCTION CAPACITANCE
UNIDIRECTIONAL
C
J
, JUNCTION CAPACITANCE.(pF)
Tj=25
0
C
f=1.0MHz
Vsig=50mVp-p
10,000
MEASURED at
ZERO BIAS
1,000
MEASURED at
STAND-OFF
VOLTAGE, V
WM
100
1
10
100
200
V
(BR)
, BREAKDOWN VOLTAGE. VOLTS
http://www.luguang.cn
mail:lge@luguang.cn
P4KE SERIES
400 Watts Transient Voltage Suppressor Diodes
ELECTRICAL CHARACTERISTICS (TA=25
O
C unless otherwise noted)
Device
Nominal
Voltage
(Volts)
6.8
6.8
7.5
7.5
8.2
8.2
9.1
9.1
10
10
11
11
12
12
13
13
15
15
16
16
18
18
20
20
22
22
24
24
27
27
30
30
33
33
36
36
39
39
43
43
47
47
51
51
56
56
62
62
68
68
75
75
82
82
91
91
100
100
110
110
120
120
130
130
150
150
160
160
170
170
180
180
200
200
220
220
250
250
300
300
350
350
400
400
440
440
Breakdown Voltage
V
BR
(Volts) (Note 1)
Min
Max
6.12
6.46
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
53.2
55.8
58.9
61.2
64.6
67.5
71.3
73.8
77.9
81.9
86.5
90.0
95.0
99.0
105.0
108.0
114.0
117.0
124.0
135.0
143.0
144.0
152.0
153.0
162.0
162.0
171.0
180.0
190.0
198.0
209.0
225.0
237.0
270.0
285.0
315.0
332.0
360.0
380.0
396.0
418.0
7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.6
58.8
68.2
65.1
74.8
71.4
82.5
78.8
90.2
86.1
100.0
95.5
110.0
105.0
121.0
116.0
132.0
126.0
143.0
137.0
165.0
158.0
176.0
168.0
187.0
179.0
198.0
189.0
220.0
210.0
242.0
231.0
275.0
263.0
330.0
315.0
385.0
368.0
440.0
420.0
484.0
462.0
Test
Current
@I
T
(mA)
10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Stand-Off
Voltage
V
WM
(Volts)
5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8
38.1
40.2
41.3
43.6
45.4
47.8
50.2
53.0
55.1
58.1
60.7
64.1
66.4
70.1
73.7
77.8
81.0
85.5
89.2
94.0
97.2
102.0
105.0
111.0
121.0
128.0
130.0
136.0
138.0
145.0
146.0
154.0
162.0
171.0
175.0
185.0
202.0
214.0
243.0
256.0
284.0
300.0
324.0
342.0
356.0
376.0
Maximum
Reverse Leakage
at V
WM
I
D
(uA)
1000
1000
500
500
200
200
50
50
10
10
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Maximum
Peak Pulse
Current I
PPM
(Note 2)(Amps)
38
40
35
37
33
34
30
31
28
29
26
27
24
25
22
23
19
20
17.8
18.6
16
16.5
14
15
13
13.7
12
12.6
10.7
11.0
9.6
10
8.8
9.0
8.0
8.4
7.4
7.7
6.7
7.0
6.2
6.4
5.7
6.0
5.2
5.4
4.7
5.0
4.2
4.5
3.8
4.0
3.5
3.7
3.2
3.3
2.9
3.0
2.6
2.7
2.4
2.5
2.2
2.3
1.9
2.0
1.8
1.9
1.7
1.8
1.6
1.7
1.4
1.51
1.2
1.3
1.1
1.2
0.97
1.0
0.83
0.87
0.73
0.76
0.66
0.69
Maximum
Clamping
Voltage at I
PPM
V
C
(Volts)
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.5
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
92.0
108.0
103.0
118.0
113.0
131.0
125.0
144.0
137.0
158.0
152.0
173.0
165.0
187.0
179.0
215.0
207.0
230.0
219.0
244.0
234.0
258.0
246.0
287.0
274.0
344.0
328.0
360.0
344.0
430.0
414.0
504.0
482.0
574.0
548.0
631.0
600.0
Maximum
Temperature
Coefficient
O
of V
BR
(% / C)
0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.078
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.088
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
0.104
0.105
0.105
0.105
0.105
0.106
0.106
0.106
0.106
0.107
0.107
0.107
0.107
0.107
0.107
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
P4KE6.8
P4KE6.8A
P4KE7.5
P4KE7.5A
P4KE8.2
P4KE8.2A
P4KE9.1
P4KE9.1A
P4KE10
P4KE10A
P4KE11
P4KE11A
P4KE12
P4KE12A
P4KE13
P4KE13A
P4KE15
P4KE15A
P4KE16
P4KE16A
P4KE18
P4KE18A
P4KE20
P4KE20A
P4KE22
P4KE22A
P4KE24
P4KE24A
P4KE27
P4KE27A
P4KE30
P4KE30A
P4KE33
P4KE33A
P4KE36
P4KE36A
P4KE39
P4KE39A
P4KE43
P4KE43A
P4KE47
P4KE47A
P4KE51
P4KE51A
P4KE56
P4KE56A
P4KE62
P4KE62A
P4KE68
K4PE68A
P4KE75
P4KE75A
P4KE82
P4KE82A
P4KE91
P4KE91A
P4KE100
P4KE100A
P4KE110
P4KE110A
P4KE120
P4KE120A
P4KE130
P4KE130A
P4KE150
P4KE150A
P4KE160
P4KE160A
P4KE170
P4KE170A
P4KE180
P4KE180A
P4KE200
P4KE200A
P4KE220
P4KE220A
P4KE250
P4KE250A
P4KE300
P4KE300A
P4KE350
P4KE350A
P4KE400
P4KE400A
P4KE440
P4KE440A
Notes:
1. V
BR
measured after I
T
applied for 300us, I
T
=square wave pulse or equivalent.
2. Surge current waveform per Figure 3 and derate per Figure 2.
3. For bipolar types having V
WM
of 10 volts and under, the I
D
limit is doubled.
4. All terms and symbols are consistent with ANSI/IEEE C62.35.
http://www.luguang.cn
mail:lge@luguang.cn
P4KE SERIES
400 Watts Transient Voltage Suppressor Diodes
TVS APPLICATION NOTES:
Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of
protection. The following is a typical linear power supply with transient voltage suppressor units placed at
different points. All provide protection of the load.
FIGURE 1
Transient Voltage Suppressors 1 provides maximum protection. However, the system will probably require
replacement of the line fuse(F) since it provides a dominant portion of the series impedance when a surge is
encountered.
However, we do not recommend to use the TVS diode here, unless we can know the electric circuit
impedance and the magnitude of surge rushed into the circuit. Otherwise the TVS diode is easy to be
destroyed by voltage surge.
Transient Voltage Suppressor 2 provides execllent protection of circuitry excluding the transformer(T).
However, since the transformer is a large part of the series impedance, the chance of the line fuse opening
during the surge condition is reduced.
Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional
Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse,
transformer, and bridge rectifier(B) so failure of the line fuse is further reduced. If only Transient Voltage
Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current
rating to prevent failure by transients.
Any combination of these three, or any one of these applications, will prevent damage to the load. This would
require varying trade-offs in power supply protection versus maintenance(changing the time fuse).
An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge.
This reduces the parts count and incorporates the protection within the bridge rectifier.
FIGURE 2
http://www.luguang.cn
mail:lge@luguang.cn